1. ESPRESSO reveals blueshifted neutral iron emission lines on the dayside of WASP-76 b
- Author
-
Silva, A. R. Costa, Demangeon, O. D. S., Santos, N. C., Ehrenreich, D., Lovis, C., Chakraborty, H., Lendl, M., Pepe, F., Cristiani, S., Rebolo, R., Zapatero-Osorio, M. R., Adibekyan, V., Alibert, Y., Allart, R., Prieto, C. Allende, Silva, T. Azevedo, Borsa, F., Bourrier, V., Cristo, E., Di Marcantonio, P., Esparza-Borges, E., Figueira, P., Hernández, J. I. González, Herrero-Cisneros, E., Curto, G. Lo, Martins, C. J. A. P., Mehner, A., Nunes, N. J., Palle, E., Pelletier, S., Seidel, J. V., Silva, A. M., Sousa, S. G., Sozzetti, A., Steiner, M., Mascareño, A. Suárez, and Udry, S.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Ultra hot Jupiters (gas giants, Teq>2000 K) are intriguing exoplanets due to their extreme atmospheres. Their torrid daysides can be characterised using ground-based high-resolution emission spectroscopy. We search for signatures of neutral and singly ionised iron (Fe I and Fe II) in the dayside of the ultra hot Jupiter WASP-76 b, as these species were detected via transmission spectroscopy in this exoplanet. Furthermore, we aim to confirm the existence of a thermal inversion layer, which has been reported in previous studies, and attempt to constrain its properties. We observed WASP-76 b on four epochs with ESPRESSO at the VLT, at orbital phases shortly before and after the secondary transit, when the dayside is in view. We present the first analysis of high-resolution optical emission spectra for this exoplanet. We compare the data to synthetic templates from petitRADTRANS, using cross-correlation function techniques. We detect a blueshifted (-4.7+-0.3 km/s) Fe I emission signature on the dayside of WASP-76 b at 6.0-sigma. The signal is detected independently both before and after the eclipse, and blueshifted in both cases. The presence of iron emission features confirms the existence of a thermal inversion layer. Fe II was not detected, possibly because this species is located in the upper layers of the atmosphere, which are more optically thin. Thus the Fe II signature on the dayside of WASP-76 b is too weak to be detected with emission spectroscopy. We propose that the blueshifted Fe I signature is created by material rising from the hot spot to the upper layers of the atmosphere, and discuss possible scenarios related to the position of the hotspot. This work unveils some of the dynamic processes ongoing on the dayside of WASP-76 b through the analysis of the Fe I signature from its atmosphere, and complements previous knowledge obtained from transmission studies., Comment: 15 pages, 8 figures + 2 figures in appendix. Abstract slightly abridged. Published in Astronomy & Astrophysics
- Published
- 2024
- Full Text
- View/download PDF