1. [Untitled]
- Author
-
Park Bs, Lankester Dj, Zammit Va, McCahill A, and Price Nt
- Subjects
Messenger RNA ,Apolipoprotein B ,biology ,p38 mitogen-activated protein kinases ,Clinical Biochemistry ,Cell Biology ,General Medicine ,Molecular biology ,Wortmannin ,chemistry.chemical_compound ,chemistry ,APOBEC-1 Deaminase ,RNA editing ,biology.protein ,Protein biosynthesis ,Molecular Biology ,Anisomycin - Abstract
The mRNA for apolipoprotein B (apoB) is edited by the enzyme APOBEC-1, which acts as part of a multiprotein complex or editosome. In cultured rat hepatocytes obtained from fed animals this results in the presence of edited and unedited apoB mRNA in a ratio of approximately 3:2 in the basal state. In this study we show that hyper-osmotic media, which induce cell shrinkage, resulted in an acute increase in the degree of editing of apoB mRNA (hypo-osmotic conditions had no effect). This increase was accompanied by a parallel and highly positively correlated change in the ratio of the rate of synthesis of apoB48 relative to that of apoB100. These changes occurred in the absence of any changes in the overall APOBEC-1 mRNA levels, indicating that the activation of editing occurred at a post-transcriptional level. Levels of total apoB mRNA were also unaffected by hyper-osmotic exposure of the cells indicating that changes in the relative rates of synthesis of apoB48 and apoB100 were due to post/translational events. Exposure of cells to anisomycin at concentrations (50 micrograms/ml) that inhibit protein synthesis or to the transcriptional inhibitor actinomycin D produced changes in the degree of apoB mRNA editing that were similar to those given by hyper-osmotic shock indicating that editing is able to respond acutely to transcriptional or translational inhibition. Anisomycin, at concentrations (50 ng/ml) that activate SAPK/JNK but do not inhibit protein synthesis, gave only a fraction of the effect of hyper-osmotic shock. SB203580, an inhibitor of p38 kinase, did not attenuate the effects of hyper-osmotic conditions on APOBEC-1 editing. These observations suggest that these MAPkinase pathways play a relatively minor part in the transduction of the osmotic stimulus to the editing mechanism. The hyper-osmotically-induced increase in apoB mRNA editing was also insensitive to PD98059 and wortmannin (inhibitors of MEK and PI3 kinase, respectively). These data provide evidence that apoB mRNA editing is capable of acute modulation independently of transcriptional or translational mechanisms and suggest that one or more components of the editosome may undergo post-translational activation.
- Published
- 2000