18 results on '"Zaksas V"'
Search Results
2. Role of miR-2392 in driving SARS-CoV-2 infection
- Author
-
Chatterjee, A., Meller, R., Nagpal, P., Schisler, J.C., Grabham, P., Cerqueira, B., Yousey, A., Aykin-Burns, N., Mason, C.E., Harris, A.D., Pearson, A.N., Foox, J., Aunins, T.R., Meydan, C., Galeano, D., Dybas, J.M., Vanderburg, C., Saravia-Butler, A., Singh, U., Sharma, S., Wallace, D.C., Costes, S.V., Singh, L.N., Enguita, F.J., Bowman, N.M., Sajadi, M.M., Moraes-Vieira, P.M., Griffin, R.J., Meinig, S.L., Wolfgang, M.C., Baylin, S.B., Emmett, M.R., Guarnieri, J.W., Altinok, S., Mozsary, C., Sapoval, N., Zaksas, V., McDonald, J.T., Davanzo, G.G., Wurtele, E.S., Treangen, T.J., Taylor, D., Corry, P.M., Beheshti, A., Priebe, W., Paccanaro, A., Hagan, R.S., UNC COVID-19 Pathobiology Consortium, and Clement, J.
- Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.
- Published
- 2021
- Full Text
- View/download PDF
3. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function.
- Author
-
Galeano D, Imrat, Haltom J, Andolino C, Yousey A, Zaksas V, Das S, Baylin SB, Wallace DC, Slack FJ, Enguita FJ, Wurtele ES, Teegarden D, Meller R, Cifuentes D, and Beheshti A
- Subjects
- Animals, Humans, Erythrocytes drug effects, Erythrocytes metabolism, Small Molecule Libraries pharmacology, Small Molecule Libraries chemistry, Embryonic Development drug effects, Embryonic Development genetics, Neural Networks, Computer, MicroRNAs genetics, MicroRNAs metabolism, Zebrafish genetics, Deep Learning
- Abstract
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs.
- Author
-
McDonald JT, Kim J, Farmerie L, Johnson ML, Trovao NS, Arif S, Siew K, Tsoy S, Bram Y, Park J, Overbey E, Ryon K, Haltom J, Singh U, Enguita FJ, Zaksas V, Guarnieri JW, Topper M, Wallace DC, Meydan C, Baylin S, Meller R, Muratani M, Porterfield DM, Kaufman B, Mori MA, Walsh SB, Sigaudo-Roussel D, Mebarek S, Bottini M, Marquette CA, Wurtele ES, Schwartz RE, Galeano D, Mason CE, Grabham P, and Beheshti A
- Subjects
- Humans, DNA Breaks, Double-Stranded radiation effects, Radiation Injuries genetics, Radiation Injuries prevention & control, Male, Mitochondria radiation effects, Mitochondria metabolism, Mitochondria genetics, Female, Adult, MicroRNAs genetics, MicroRNAs metabolism, Space Flight, Cosmic Radiation adverse effects, Astronauts
- Abstract
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. Aging and putative frailty biomarkers are altered by spaceflight.
- Author
-
Camera A, Tabetah M, Castañeda V, Kim J, Galsinh AS, Haro-Vinueza A, Salinas I, Seylani A, Arif S, Das S, Mori MA, Carano A, de Oliveira LC, Muratani M, Barker R, Zaksas V, Goel C, Dimokidis E, Taylor DM, Jeong J, Overbey E, Meydan C, Porterfield DM, Díaz JE, Caicedo A, Schisler JC, Laiakis EC, Mason CE, Kim MS, Karouia F, Szewczyk NJ, and Beheshti A
- Subjects
- Animals, Mice, Humans, Astronauts, Male, Weightlessness adverse effects, Sarcopenia metabolism, Space Flight, Frailty, Biomarkers, Aging genetics
- Abstract
Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth. However, our understanding of the connection between these molecular shifts and disease development in space remains limited. Frailty syndrome, a clinical syndrome associated with biological aging, has not been comprehensively investigated during spaceflight. To bridge this knowledge gap, we leveraged murine data obtained from NASA's GeneLab, along with astronaut data gathered from the JAXA and Inspiration4 missions. Our objective was to assess the presence of biological markers and pathways related to frailty, aging, and sarcopenia within the spaceflight context. Through our analysis, we identified notable changes in gene expression patterns that may be indicative of the development of a frailty-like condition during space missions. These findings suggest that the parallels between spaceflight and the aging process may extend to encompass frailty as well. Consequently, further investigations exploring the utility of a frailty index in monitoring astronaut health appear to be warranted., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. Spaceflight induces changes in gene expression profiles linked to insulin and estrogen.
- Author
-
Mathyk BA, Tabetah M, Karim R, Zaksas V, Kim J, Anu RI, Muratani M, Tasoula A, Singh RS, Chen YK, Overbey E, Park J, Cope H, Fazelinia H, Povero D, Borg J, Klotz RV, Yu M, Young SL, Mason CE, Szewczyk N, St Clair RM, Karouia F, and Beheshti A
- Subjects
- Animals, Humans, Mice, Male, Female, Transcriptome, Signal Transduction, Mice, Inbred C57BL, Energy Metabolism genetics, Insulin Resistance genetics, Liver metabolism, Adult, Gene Expression Regulation, Space Flight, Insulin metabolism, Estrogens metabolism
- Abstract
Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes were most prominent in the liver, where we observed inhibition of insulin and estrogen receptor signaling with concomitant hepatic insulin resistance and steatosis. Based on the metabolic demand, metabolic pathways mediated by insulin and estrogen vary among muscles, specifically between the soleus and extensor digitorum longus. In humans, spaceflight induced changes in insulin and estrogen related genes and pathways. Pathway analysis demonstrated spaceflight induced changes in insulin resistance, estrogen signaling, stress response, and viral infection. These data strongly suggest the need for further research on the metabolic and reproductive endocrinologic effects of space travel, if we are to become a successful interplanetary species., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. Hepatitis C screening in Lithuania: first-year results and scenarios for achieving WHO elimination targets.
- Author
-
Petkevičienė J, Voeller A, Čiupkevičienė E, Razavi-Shearer D, Liakina V, Jančorienė L, Kazėnaitė E, Zaksas V, Urbonas G, and Kupčinskas L
- Subjects
- Male, Female, Humans, Aged, Lithuania epidemiology, Antiviral Agents therapeutic use, Seroepidemiologic Studies, Hepacivirus, World Health Organization, Fibrosis, Drug Users, Substance Abuse, Intravenous, Hepatitis C, Chronic drug therapy, Hepatitis C diagnosis, Hepatitis C epidemiology, Hepatitis C prevention & control
- Abstract
Background: The World Health Organization (WHO) has outlined a set of targets to achieve eliminating hepatitis C by 2030. In May 2022, Lithuanian health authorities initiated a hepatitis C virus (HCV) screening program to start working towards elimination. In the program, bonus was given to general practitioners (GPs) to promote and conduct anti-HCV tests for two situations: (1) one time testing for individuals born in 1945-1994 and (2) annual HCV testing for persons who inject drugs or are living with human immunodeficiency virus (HIV) regardless of age. This study aimed to model the current viral hepatitis C epidemiological status in Lithuania and to outline the requirements for WHO elimination targets using the first-year HCV screening results., Methods: Individuals were invited to participate in the anti-HCV screening by GPs during routine visits. Patients who tested positive were then referred to a gastroenterologist or infectious disease doctor for further confirmatory testing. If a patient received a positive RNA test and a fibrosis staging result of ≥ F2, the doctor prescribed direct-acting antivirals. Information on the patients screened, diagnosed, and treated was obtained from the National Health Insurance Fund. The Markov disease progression model, developed by the CDA Foundation, was used to evaluate the screening program results and HCV elimination progress in Lithuania., Results: Between May 2022 and April 2023, 790,070 individuals underwent anti-HCV testing, with 11,943 individuals (1.5%) receiving positive results. Anti-HCV seroprevalence was found to be higher among males than females, 1.9% and 1.2%, respectively. Within the risk population tested, 2087 (31.1%) seropositive individuals were identified. When comparing the screening program results to WHO elimination targets through modelling, 2180 patients still need to be treated annually until 2030, along with expanding fibrosis restrictions. If an elimination approach was implemented, 1000 new infections would be prevented, while saving 150 lives and averting 90 decompensated cirrhosis cases and 110 hepatocellular carcinoma cases., Conclusions: During the first year of the Lithuanian screening program, GPs were able to screen 44% of the target population. However, the country will not meet elimination targets as it currently stands without increasing treatment levels and lifting fibrosis restrictions., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
8. A comprehensive SARS-CoV-2 and COVID-19 review, Part 2: host extracellular to systemic effects of SARS-CoV-2 infection.
- Author
-
Narayanan SA, Jamison DA Jr, Guarnieri JW, Zaksas V, Topper M, Koutnik AP, Park J, Clark KB, Enguita FJ, Leitão AL, Das S, Moraes-Vieira PM, Galeano D, Mason CE, Trovão NS, Schwartz RE, Schisler JC, Coelho-Dos-Reis JGA, Wurtele ES, and Beheshti A
- Subjects
- Animals, Humans, SARS-CoV-2, COVID-19
- Abstract
COVID-19, the disease caused by SARS-CoV-2, has caused significant morbidity and mortality worldwide. The betacoronavirus continues to evolve with global health implications as we race to learn more to curb its transmission, evolution, and sequelae. The focus of this review, the second of a three-part series, is on the biological effects of the SARS-CoV-2 virus on post-acute disease in the context of tissue and organ adaptations and damage. We highlight the current knowledge and describe how virological, animal, and clinical studies have shed light on the mechanisms driving the varied clinical diagnoses and observations of COVID-19 patients. Moreover, we describe how investigations into SARS-CoV-2 effects have informed the understanding of viral pathogenesis and provide innovative pathways for future research on the mechanisms of viral diseases., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
9. Pharmacotherapy and pulmonary fibrosis risk after SARS-CoV-2 infection-response to Guangting Zeng and Yuchi Zhou.
- Author
-
Adegunsoye A, Baccile R, Best TJ, Zaksas V, Zhang H, Karnik R, Patel BK, Solomonides AE, Parker WF, and Solway J
- Abstract
Competing Interests: RB, TJB, VZ, HZ, AES, and RK have nothing to disclose. AA has received speaking and advisory board fees from Genentech and Boehringer Ingelheim and is supported by a career development award from the National Heart, Lung, and Blood Institute (NHLBI K23HL146942), and grant funding from the American College of Chest Physicians and the Pulmonary Fibrosis Foundation. BKP is supported by a career development award from the NHLBI (K23-HL148387) and funding from the Walder Foundation and the Center for Healthcare Delivery Science and Innovation at the University of Chicago. WFP is supported by a career development award from the NHLBI (K08HL150291). JS has research and training funding from NIH, NSF, and the Burroughs Wellcome Fund, and has a potential financial interest in PulmOne Advanced Medical Diagnostics, Ltd, Israel. AES has equities in the following companies: Pharmaceuticals: Abbott Laboratories, Pfizer, Novo Nordisk. Industrials: in construction, IT, finance, retail, and food sectors (21 companies and 2 exchange traded funds).
- Published
- 2023
- Full Text
- View/download PDF
10. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts.
- Author
-
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Soto Albrecht Y, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Zhang S, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Bram Y, Kidane Y, Priebe W, Emmett MR, Meller R, Demharter S, Stentoft-Hansen V, Salvatore M, Galeano D, Enguita FJ, Grabham P, Trovao NS, Singh U, Haltom J, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, and Wallace DC
- Subjects
- Cricetinae, Humans, Animals, Mice, SARS-CoV-2, Rodentia, Genes, Mitochondrial, Lung pathology, COVID-19 pathology
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.
- Published
- 2023
- Full Text
- View/download PDF
11. Pharmacotherapy and pulmonary fibrosis risk after SARS-CoV-2 infection: a prospective nationwide cohort study in the United States.
- Author
-
Adegunsoye A, Baccile R, Best TJ, Zaksas V, Zhang H, Karnik R, Patel BK, Solomonides AE, Parker WF, and Solway J
- Abstract
Background: Pulmonary fibrosis is characterized by lung parenchymal destruction and can increase morbidity and mortality. Pulmonary fibrosis commonly occurs following hospitalization for SARS-CoV-2 infection. As there are medications that modify pulmonary fibrosis risk, we investigated whether distinct pharmacotherapies (amiodarone, cancer chemotherapy, corticosteroids, and rituximab) are associated with differences in post-COVID-19 pulmonary fibrosis incidence., Methods: We used the National COVID-19 Cohort Collaboration (N3C) Data Enclave, which aggregates and harmonizes COVID-19 data across the United States, to assess pulmonary fibrosis incidence documented at least 60 days after COVID-19 diagnosis among adults hospitalized between January 1st, 2020 and July 6th, 2022 without pre-existing pulmonary fibrosis. We used propensity scores to match pre-COVID-19 drug-exposed and unexposed cohorts (1:1) based on covariates with known influence on pulmonary fibrosis incidence, and estimated the association of drug exposure with risk for post-COVID-19 pulmonary fibrosis. Sensitivity analyses considered pulmonary fibrosis incidence documented at least 30- or 90-days post-hospitalization and pulmonary fibrosis incidence in the COVID-19-negative N3C population., Findings: Among 5,923,394 patients with COVID-19, we analyzed 452,951 hospitalized adults, among whom pulmonary fibrosis incidence was 1.1 per 100-person-years. 277,984 hospitalized adults with COVID-19 were included in our primary analysis, among whom all drug exposed cohorts were well-matched to unexposed cohorts (standardized mean differences <0.1). The post-COVID-19 pulmonary fibrosis incidence rate ratio (IRR) was 2.5 (95% CI 1.2-5.1, P = 0.01) for rituximab, 1.6 (95% CI 1.3-2.0, P < 0.0001) for chemotherapy, and 1.2 (95% CI 1.0-1.3, P = 0.02) for corticosteroids. Amiodarone exposure had no significant association with post-COVID-19 pulmonary fibrosis (IRR = 0.8, 95% CI 0.6-1.1, P = 0.24). In sensitivity analyses, pre-COVID-19 corticosteroid use was not consistently associated with post-COVID-19 pulmonary fibrosis. In the COVID-19 negative hospitalized population (n = 1,240,461), pulmonary fibrosis incidence was lower overall (0.6 per 100-person-years) and for patients exposed to all four drugs., Interpretation: Recent rituximab or cancer chemotherapy before COVID-19 infection in hospitalized patients is associated with increased risk for post-COVID-19 pulmonary fibrosis., Funding: The analyses described in this publication were conducted with data or tools accessed through the NCATS N3C Data Enclave https://covid.cd2h.org and N3C Attribution & Publication Policy v1.2-2020-08-25b supported by NIHK23HL146942, NIHK08HL150291, NIHK23HL148387, NIHUL1TR002389, NCATSU24 TR002306, and a SECURED grant from the Walder Foundation/Center for Healthcare Delivery Science and Innovation, University of Chicago. WFP received a grant from the Greenwall Foundation. This research was possible because of the patients whose information is included within the data and the organizations (https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories) and scientists who have contributed to the on-going development of this community resource (https://doi.org/10.1093/jamia/ocaa196)., Competing Interests: RB, TJB, VZ, HZ, AES, and RK have nothing to disclose. AA has received speaking and advisory board fees from Genentech and Boehringer Ingelheim and is supported by a career development award from the National Heart, Lung, and Blood Institute (NHLBI K23HL146942), and grant funding from the American College of Chest Physicians and the Pulmonary Fibrosis Foundation. BKP is supported by a career development award from the NHLBI (K23-HL148387) and funding from the Walder Foundation and the Center for Healthcare Delivery Science and Innovation at the University of Chicago. JS has research and training funding from NIH, NSF, and the Burroughs Wellcome Fund, and has a potential financial interest in PulmOne Advanced Medical Diagnostics, Ltd, Israel., (© 2023 The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
12. Analysis of bronchoalveolar lavage fluid metatranscriptomes among patients with COVID-19 disease.
- Author
-
Jochum M, Lee MD, Curry K, Zaksas V, Vitalis E, Treangen T, Aagaard K, and Ternus KL
- Subjects
- Humans, Bronchoalveolar Lavage Fluid, Gene Ontology, COVID-19
- Abstract
To better understand the potential relationship between COVID-19 disease and hologenome microbial community dynamics and functional profiles, we conducted a multivariate taxonomic and functional microbiome comparison of publicly available human bronchoalveolar lavage fluid (BALF) metatranscriptome samples amongst COVID-19 (n = 32), community acquired pneumonia (CAP) (n = 25), and uninfected samples (n = 29). We then performed a stratified analysis based on mortality amongst the COVID-19 cohort with known outcomes of deceased (n = 10) versus survived (n = 15). Our overarching hypothesis was that there are detectable and functionally significant relationships between BALF microbial metatranscriptomes and the severity of COVID-19 disease onset and progression. We observed 34 functionally discriminant gene ontology (GO) terms in COVID-19 disease compared to the CAP and uninfected cohorts, and 21 GO terms functionally discriminant to COVID-19 mortality (q < 0.05). GO terms enriched in the COVID-19 disease cohort included hydrolase activity, and significant GO terms under the parental terms of biological regulation, viral process, and interspecies interaction between organisms. Notable GO terms associated with COVID-19 mortality included nucleobase-containing compound biosynthetic process, organonitrogen compound catabolic process, pyrimidine-containing compound biosynthetic process, and DNA recombination, RNA binding, magnesium and zinc ion binding, oxidoreductase activity, and endopeptidase activity. A Dirichlet multinomial mixtures clustering analysis resulted in a best model fit using three distinct clusters that were significantly associated with COVID-19 disease and mortality. We additionally observed discriminant taxonomic differences associated with COVID-19 disease and mortality in the genus Sphingomonas, belonging to the Sphingomonadacae family, Variovorax, belonging to the Comamonadaceae family, and in the class Bacteroidia, belonging to the order Bacteroidales. To our knowledge, this is the first study to evaluate significant differences in taxonomic and functional signatures between BALF metatranscriptomes from COVID-19, CAP, and uninfected cohorts, as well as associating these taxa and microbial gene functions with COVID-19 mortality. Collectively, while this data does not speak to causality nor directionality of the association, it does demonstrate a significant relationship between the human microbiome and COVID-19. The results from this study have rendered testable hypotheses that warrant further investigation to better understand the causality and directionality of host-microbiome-pathogen interactions., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
13. A comprehensive SARS-CoV-2 and COVID-19 review, Part 1: Intracellular overdrive for SARS-CoV-2 infection.
- Author
-
Jamison DA Jr, Anand Narayanan S, Trovão NS, Guarnieri JW, Topper MJ, Moraes-Vieira PM, Zaksas V, Singh KK, Wurtele ES, and Beheshti A
- Subjects
- Humans, Virus Replication, COVID-19, SARS-CoV-2
- Abstract
COVID-19, the disease caused by SARS-CoV-2, has claimed approximately 5 million lives and 257 million cases reported globally. This virus and disease have significantly affected people worldwide, whether directly and/or indirectly, with a virulent pathogen that continues to evolve as we race to learn how to prevent, control, or cure COVID-19. The focus of this review is on the SARS-CoV-2 virus' mechanism of infection and its proclivity at adapting and restructuring the intracellular environment to support viral replication. We highlight current knowledge and how scientific communities with expertize in viral, cellular, and clinical biology have contributed to increase our understanding of SARS-CoV-2, and how these findings may help explain the widely varied clinical observations of COVID-19 patients., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
14. The interplay between lncRNAs, RNA-binding proteins and viral genome during SARS-CoV-2 infection reveals strong connections with regulatory events involved in RNA metabolism and immune response.
- Author
-
Enguita FJ, Leitão AL, McDonald JT, Zaksas V, Das S, Galeano D, Taylor D, Wurtele ES, Saravia-Butler A, Baylin SB, Meller R, Porterfield DM, Wallace DC, Schisler JC, Mason CE, and Beheshti A
- Subjects
- Fragile X Mental Retardation Protein, Genome, Viral, Humans, Immunity, Mitochondrial Proteins metabolism, RNA, Untranslated genetics, RNA-Binding Proteins genetics, RNA-Binding Proteins metabolism, SARS-CoV-2 genetics, Thiolester Hydrolases metabolism, COVID-19 genetics, RNA, Long Noncoding genetics, RNA, Long Noncoding metabolism
- Abstract
Rationale: Viral infections are complex processes based on an intricate network of molecular interactions. The infectious agent hijacks components of the cellular machinery for its profit, circumventing the natural defense mechanisms triggered by the infected cell. The successful completion of the replicative viral cycle within a cell depends on the function of viral components versus the cellular defenses. Non-coding RNAs (ncRNAs) are important cellular modulators, either promoting or preventing the progression of viral infections. Among these ncRNAs, the long non-coding RNA (lncRNA) family is especially relevant due to their intrinsic functional properties and ubiquitous biological roles. Specific lncRNAs have been recently characterized as modulators of the cellular response during infection of human host cells by single stranded RNA viruses. However, the role of host lncRNAs in the infection by human RNA coronaviruses such as SARS-CoV-2 remains uncharacterized. Methods: In the present work, we have performed a transcriptomic study of a cohort of patients with different SARS-CoV-2 viral load and analyzed the involvement of lncRNAs in supporting regulatory networks based on their interaction with RNA-binding proteins (RBPs). Results: Our results revealed the existence of a SARS-CoV-2 infection-dependent pattern of transcriptional up-regulation in which specific lncRNAs are an integral component. To determine the role of these lncRNAs, we performed a functional correlation analysis complemented with the study of the validated interactions between lncRNAs and RBPs. This combination of in silico functional association studies and experimental evidence allowed us to identify a lncRNA signature composed of six elements - NRIR, BISPR, MIR155HG, FMR1-IT1, USP30-AS1, and U62317.2 - associated with the regulation of SARS-CoV-2 infection. Conclusions: We propose a competition mechanism between the viral RNA genome and the regulatory lncRNAs in the sequestering of specific RBPs that modulates the interferon response and the regulation of RNA surveillance by nonsense-mediated decay (NMD)., Competing Interests: Competing Interests: The authors have declared that no competing interest exists., (© The author(s).)
- Published
- 2022
- Full Text
- View/download PDF
15. TARGETED DOWN REGULATION OF CORE MITOCHONDRIAL GENES DURING SARS-COV-2 INFECTION.
- Author
-
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Albrecht YS, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Kidane YH, Priebe W, Emmett MR, Meller R, Singh U, Bram Y, tenOever BR, Heise MT, Moorman NJ, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baxter VK, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, and Wallace DC
- Abstract
Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19.
- Published
- 2022
- Full Text
- View/download PDF
16. Role of miR-2392 in driving SARS-CoV-2 infection.
- Author
-
McDonald JT, Enguita FJ, Taylor D, Griffin RJ, Priebe W, Emmett MR, Sajadi MM, Harris AD, Clement J, Dybas JM, Aykin-Burns N, Guarnieri JW, Singh LN, Grabham P, Baylin SB, Yousey A, Pearson AN, Corry PM, Saravia-Butler A, Aunins TR, Sharma S, Nagpal P, Meydan C, Foox J, Mozsary C, Cerqueira B, Zaksas V, Singh U, Wurtele ES, Costes SV, Davanzo GG, Galeano D, Paccanaro A, Meinig SL, Hagan RS, Bowman NM, Wolfgang MC, Altinok S, Sapoval N, Treangen TJ, Moraes-Vieira PM, Vanderburg C, Wallace DC, Schisler JC, Mason CE, Chatterjee A, Meller R, and Beheshti A
- Subjects
- Adult, Aged, Aged, 80 and over, Animals, Antiviral Agents pharmacology, Biomarkers metabolism, Cricetinae, Female, Ferrets, Gene Expression Regulation, Glycolysis, Healthy Volunteers, Humans, Hypoxia, Inflammation, Male, Mice, Middle Aged, Proteomics methods, ROC Curve, Rats, COVID-19 Drug Treatment, COVID-19 genetics, COVID-19 immunology, MicroRNAs genetics, SARS-CoV-2 genetics
- Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans., Competing Interests: Declaration of interests A.C., P.N., S.V.C., and A.B. have a provisional patent based on the antiviral discovery and design. A.C., P.N., and S.S. are part of the company (Sachi Bioworks Inc.) that has filed a patent on the Nanoligomer technology., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
17. The Great Deceiver: miR-2392's Hidden Role in Driving SARS-CoV-2 Infection.
- Author
-
McDonald JT, Enguita FJ, Taylor D, Griffin RJ, Priebe W, Emmett MR, Sajadi MM, Harris AD, Clement J, Dybas JM, Aykin-Burns N, Guarnieri JW, Singh LN, Grabham P, Baylin SB, Yousey A, Pearson AN, Corry PM, Saravia-Butler A, Aunins TR, Sharma S, Nagpal P, Meydan C, Foox J, Mozsary C, Cerqueira B, Zaksas V, Singh U, Wurtele ES, Costes SV, Davanzo GG, Galeano D, Paccanaro A, Meinig SL, Hagan RS, Bowman NM, Wolfgang MC, Altinok S, Sapoval N, Treangen TJ, Moraes-Vieira PM, Vanderburg C, Wallace DC, Schisler J, Mason CE, Chatterjee A, Meller R, and Beheshti A
- Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of COVID-19 positive patients, but not detected in COVID-19 negative patients. These findings indicate the potential for developing a novel, minimally invasive, COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we have developed a novel miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.
- Published
- 2021
- Full Text
- View/download PDF
18. European guidelines for quality assurance in colorectal cancer screening and diagnosis: overview and introduction to the full supplement publication.
- Author
-
von Karsa L, Patnick J, Segnan N, Atkin W, Halloran S, Lansdorp-Vogelaar I, Malila N, Minozzi S, Moss S, Quirke P, Steele RJ, Vieth M, Aabakken L, Altenhofen L, Ancelle-Park R, Antoljak N, Anttila A, Armaroli P, Arrossi S, Austoker J, Banzi R, Bellisario C, Blom J, Brenner H, Bretthauer M, Camargo Cancela M, Costamagna G, Cuzick J, Dai M, Daniel J, Dekker E, Delicata N, Ducarroz S, Erfkamp H, Espinàs JA, Faivre J, Faulds Wood L, Flugelman A, Frkovic-Grazio S, Geller B, Giordano L, Grazzini G, Green J, Hamashima C, Herrmann C, Hewitson P, Hoff G, Holten I, Jover R, Kaminski MF, Kuipers EJ, Kurtinaitis J, Lambert R, Launoy G, Lee W, Leicester R, Leja M, Lieberman D, Lignini T, Lucas E, Lynge E, Mádai S, Marinho J, Maučec Zakotnik J, Minoli G, Monk C, Morais A, Muwonge R, Nadel M, Neamtiu L, Peris Tuser M, Pignone M, Pox C, Primic-Zakelj M, Psaila J, Rabeneck L, Ransohoff D, Rasmussen M, Regula J, Ren J, Rennert G, Rey J, Riddell RH, Risio M, Rodrigues V, Saito H, Sauvaget C, Scharpantgen A, Schmiegel W, Senore C, Siddiqi M, Sighoko D, Smith R, Smith S, Suchanek S, Suonio E, Tong W, Törnberg S, Van Cutsem E, Vignatelli L, Villain P, Voti L, Watanabe H, Watson J, Winawer S, Young G, Zaksas V, Zappa M, and Valori R
- Subjects
- Early Detection of Cancer, Europe, Evidence-Based Medicine, Humans, Colorectal Neoplasms diagnosis, Mass Screening standards, Quality Assurance, Health Care
- Abstract
Population-based screening for early detection and treatment of colorectal cancer (CRC) and precursor lesions, using evidence-based methods, can be effective in populations with a significant burden of the disease provided the services are of high quality. Multidisciplinary, evidence-based guidelines for quality assurance in CRC screening and diagnosis have been developed by experts in a project co-financed by the European Union. The 450-page guidelines were published in book format by the European Commission in 2010. They include 10 chapters and over 250 recommendations, individually graded according to the strength of the recommendation and the supporting evidence. Adoption of the recommendations can improve and maintain the quality and effectiveness of an entire screening process, including identification and invitation of the target population, diagnosis and management of the disease and appropriate surveillance in people with detected lesions. To make the principles, recommendations and standards in the guidelines known to a wider professional and scientific community and to facilitate their use in the scientific literature, the original content is presented in journal format in an open-access Supplement of Endoscopy. The editors have prepared the present overview to inform readers of the comprehensive scope and content of the guidelines.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.