12 results on '"Zaibert V"'
Search Results
2. FAMILY AND SOCIETY OF BOTAI CULTURE
- Author
-
Zaibert, V., primary, Baigunakov, D., additional, and Sabdenova, G., additional
- Published
- 2022
- Full Text
- View/download PDF
3. Grey wolf genomic history reveals a dual ancestry of dogs
- Author
-
Bergström, A., Stanton, D. W. G., Taron, U. H., Frantz, L., Sinding, M. -H. S., Ersmark, E., Pfrengle, S., Cassatt-Johnstone, M., Lebrasseur, O., Girdland-Flink, L., Fernandes, D. M., Ollivier, M., Speidel, L., Gopalakrishnan, S., Westbury, M. V., Ramos-Madrigal, J., Feuerborn, T. R., Reiter, E., Gretzinger, J., Münzel, S. C., Swali, P., Conard, N. J., Carøe, C., Haile, J., Linderholm, A., Androsov, S., Barnes, I., Baumann, C., Benecke, N., Bocherens, H., Brace, S., Carden, R. F., Drucker, D. G., Fedorov, S., Gasparik, M., Germonpré, M., Grigoriev, S., Groves, P., Hertwig, S. T., Ivanova, V. V., Janssens, L., Jennings, R. P., Kasparov, A. K., Kirillova, I. V., Kurmaniyazov, I., Kuzmin, Y. V., Kosintsev, P. A., Lázničková-Galetová, M., Leduc, C., Nikolskiy, P., Nussbaumer, M., O’Drisceoil, C., Orlando, L., Outram, A., Pavlova, E. Y., Perri, A. R., Pilot, M., Pitulko, V. V., Plotnikov, V. V., Protopopov, A. V., Rehazek, A., Sablin, M., Seguin-Orlando, A., Storå, J., Verjux, C., Zaibert, V. F., Zazula, G., Crombé, P., Hansen, A. J., Willerslev, E., Leonard, J. A., Götherström, A., Pinhasi, R., Schuenemann, V. J., Hofreiter, M., Gilbert, M. T. P., Shapiro, B., Larson, G., Krause, J., Dalén, L., Skoglund, P., Bergström, A., Stanton, D. W. G., Taron, U. H., Frantz, L., Sinding, M. -H. S., Ersmark, E., Pfrengle, S., Cassatt-Johnstone, M., Lebrasseur, O., Girdland-Flink, L., Fernandes, D. M., Ollivier, M., Speidel, L., Gopalakrishnan, S., Westbury, M. V., Ramos-Madrigal, J., Feuerborn, T. R., Reiter, E., Gretzinger, J., Münzel, S. C., Swali, P., Conard, N. J., Carøe, C., Haile, J., Linderholm, A., Androsov, S., Barnes, I., Baumann, C., Benecke, N., Bocherens, H., Brace, S., Carden, R. F., Drucker, D. G., Fedorov, S., Gasparik, M., Germonpré, M., Grigoriev, S., Groves, P., Hertwig, S. T., Ivanova, V. V., Janssens, L., Jennings, R. P., Kasparov, A. K., Kirillova, I. V., Kurmaniyazov, I., Kuzmin, Y. V., Kosintsev, P. A., Lázničková-Galetová, M., Leduc, C., Nikolskiy, P., Nussbaumer, M., O’Drisceoil, C., Orlando, L., Outram, A., Pavlova, E. Y., Perri, A. R., Pilot, M., Pitulko, V. V., Plotnikov, V. V., Protopopov, A. V., Rehazek, A., Sablin, M., Seguin-Orlando, A., Storå, J., Verjux, C., Zaibert, V. F., Zazula, G., Crombé, P., Hansen, A. J., Willerslev, E., Leonard, J. A., Götherström, A., Pinhasi, R., Schuenemann, V. J., Hofreiter, M., Gilbert, M. T. P., Shapiro, B., Larson, G., Krause, J., Dalén, L., and Skoglund, P.
- Abstract
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1–8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located. © 2022, The Author(s).
- Published
- 2022
4. The Origins and Spread of Domestic Horses from the Western Eurasian Steppes
- Author
-
Librado, P., Khan, N., Fages, A., Kusliy, M. A., Suchan, T., Tonasso-Calvière, L., Schiavinato, S., Alioglu, D., Fromentier, A., Perdereau, A., Aury, J. -M., Gaunitz, C., Chauvey, L., Seguin-Orlando, A., Der Sarkissian, C., Southon, J., Shapiro, B., Tishkin, A. A., Kovalev, A. A., Alquraishi, S., Alfarhan, A. H., Al-Rasheid, K. A. S., Seregély, T., Klassen, L., Iversen, R., Bignon-Lau, O., Bodu, P., Olive, M., Castel, J. -C., Boudadi-Maligne, M., Alvarez, N., Germonpré, M., Moskal-del Hoyo, M., Wilczyński, J., Pospuła, S., Lasota-Kuś, A., Tunia, K., Nowak, M., Rannamäe, E., Saarma, U., Boeskorov, G., Lōugas, L., Kyselý, R., Peške, L., Bălășescu, A., Dumitrașcu, V., Dobrescu, R., Gerber, D., Kiss, V., Szécsényi-Nagy, A., Mende, B. G., Gallina, Z., Somogyi, K., Kulcsár, G., Gál, E., Bendrey, R., Allentoft, M. E., Sirbu, G., Dergachev, V., Shephard, H., Tomadini, N., Grouard, S., Kasparov, A., Basilyan, A. E., Anisimov, M. A., Nikolskiy, P. A., Pavlova, E. Y., Pitulko, V., Brem, G., Wallner, B., Schwall, C., Keller, M., Kitagawa, K., Bessudnov, A. N., Bessudnov, A., Taylor, W., Magail, J., Gantulga, J. -O., Bayarsaikhan, J., Erdenebaatar, D., Tabaldiev, K., Mijiddorj, E., Boldgiv, B., Tsagaan, T., Pruvost, M., Olsen, S., Makarewicz, C. A., Valenzuela Lamas, S., Albizuri Canadell, S., Nieto Espinet, A., Iborra, M. P., Lira Garrido, J., Rodríguez González, E., Celestino, S., Olària, C., Arsuaga, J. L., Kotova, N., Pryor, A., Crabtree, P., Zhumatayev, R., Toleubaev, A., Morgunova, N. L., Kuznetsova, T., Lordkipanize, D., Marzullo, M., Prato, O., Bagnasco Gianni, G., Tecchiati, U., Clavel, B., Lepetz, S., Davoudi, H., Mashkour, M., Berezina, N. Y., Stockhammer, P. W., Krause, J., Haak, W., Morales-Muñiz, A., Benecke, N., Hofreiter, M., Ludwig, A., Graphodatsky, A. S., Peters, J., Kiryushin, K. Y., Iderkhangai, T. -O., Bokovenko, N. A., Vasiliev, S. K., Seregin, N. N., Chugunov, K. V., Plasteeva, N. A., Baryshnikov, G. F., Petrova, E., Sablin, M., Ananyevskaya, E., Logvin, A., Shevnina, I., Logvin, V., Kalieva, S., Loman, V., Kukushkin, I., Merz, I., Merz, V., Sakenov, S., Varfolomeyev, V., Usmanova, E., Zaibert, V., Arbuckle, B., Belinskiy, A. B., Kalmykov, A., Reinhold, S., Hansen, S., Yudin, A. I., Vybornov, A. A., Epimakhov, A., Berezina, N. S., Roslyakova, N., Kosintsev, P. A., Kuznetsov, P. F., Anthony, D., Kroonen, G. J., Kristiansen, K., Wincker, P., Outram, A., Orlando, L., Librado, P., Khan, N., Fages, A., Kusliy, M. A., Suchan, T., Tonasso-Calvière, L., Schiavinato, S., Alioglu, D., Fromentier, A., Perdereau, A., Aury, J. -M., Gaunitz, C., Chauvey, L., Seguin-Orlando, A., Der Sarkissian, C., Southon, J., Shapiro, B., Tishkin, A. A., Kovalev, A. A., Alquraishi, S., Alfarhan, A. H., Al-Rasheid, K. A. S., Seregély, T., Klassen, L., Iversen, R., Bignon-Lau, O., Bodu, P., Olive, M., Castel, J. -C., Boudadi-Maligne, M., Alvarez, N., Germonpré, M., Moskal-del Hoyo, M., Wilczyński, J., Pospuła, S., Lasota-Kuś, A., Tunia, K., Nowak, M., Rannamäe, E., Saarma, U., Boeskorov, G., Lōugas, L., Kyselý, R., Peške, L., Bălășescu, A., Dumitrașcu, V., Dobrescu, R., Gerber, D., Kiss, V., Szécsényi-Nagy, A., Mende, B. G., Gallina, Z., Somogyi, K., Kulcsár, G., Gál, E., Bendrey, R., Allentoft, M. E., Sirbu, G., Dergachev, V., Shephard, H., Tomadini, N., Grouard, S., Kasparov, A., Basilyan, A. E., Anisimov, M. A., Nikolskiy, P. A., Pavlova, E. Y., Pitulko, V., Brem, G., Wallner, B., Schwall, C., Keller, M., Kitagawa, K., Bessudnov, A. N., Bessudnov, A., Taylor, W., Magail, J., Gantulga, J. -O., Bayarsaikhan, J., Erdenebaatar, D., Tabaldiev, K., Mijiddorj, E., Boldgiv, B., Tsagaan, T., Pruvost, M., Olsen, S., Makarewicz, C. A., Valenzuela Lamas, S., Albizuri Canadell, S., Nieto Espinet, A., Iborra, M. P., Lira Garrido, J., Rodríguez González, E., Celestino, S., Olària, C., Arsuaga, J. L., Kotova, N., Pryor, A., Crabtree, P., Zhumatayev, R., Toleubaev, A., Morgunova, N. L., Kuznetsova, T., Lordkipanize, D., Marzullo, M., Prato, O., Bagnasco Gianni, G., Tecchiati, U., Clavel, B., Lepetz, S., Davoudi, H., Mashkour, M., Berezina, N. Y., Stockhammer, P. W., Krause, J., Haak, W., Morales-Muñiz, A., Benecke, N., Hofreiter, M., Ludwig, A., Graphodatsky, A. S., Peters, J., Kiryushin, K. Y., Iderkhangai, T. -O., Bokovenko, N. A., Vasiliev, S. K., Seregin, N. N., Chugunov, K. V., Plasteeva, N. A., Baryshnikov, G. F., Petrova, E., Sablin, M., Ananyevskaya, E., Logvin, A., Shevnina, I., Logvin, V., Kalieva, S., Loman, V., Kukushkin, I., Merz, I., Merz, V., Sakenov, S., Varfolomeyev, V., Usmanova, E., Zaibert, V., Arbuckle, B., Belinskiy, A. B., Kalmykov, A., Reinhold, S., Hansen, S., Yudin, A. I., Vybornov, A. A., Epimakhov, A., Berezina, N. S., Roslyakova, N., Kosintsev, P. A., Kuznetsov, P. F., Anthony, D., Kroonen, G. J., Kristiansen, K., Wincker, P., Outram, A., and Orlando, L.
- Abstract
Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2–4 at Botai, Central Asia around 3500 bc3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture11,12. © 2021, The Author(s).
- Published
- 2021
5. Characterizing the genetic history of admixture across inner Eurasia
- Author
-
Jeong, C., Balanovsky, O., Lukianova, E., Kahbatkyzy, N., Flegontov, P., Zaporozhchenko, V., Immel, A., Wang, C., Ixan, O., Khussainova, E., Bekmanov, B., Zaibert, V., Lavryashina, M., Pocheshkhova, E., Yusupov, Y., Agdzhoyan, A., Sergey, K., Bukin, A., Nymadawa, P., Churnosov, M., Skhalyakho, R., Daragan, D., Bogunov, Y., Bogunova, A., Shtrunov, A., Dubova, N., Zhabagin, M., Yepiskoposyan, L., Churakov, V., Pislegin, N., Damba, L., Saroyants, L., Dibirova, K., Artamentova, L., Utevska, O., Idrisov, E., Kamenshchikova, E., Evseeva, I., Metspalu, M., Robbeets, M., Djansugurova, L., Balanovska, E., Schiffels, S., Haak, W., Reich, D., and Krause, J.
- Abstract
The indigenous populations of inner Eurasia, a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra, harbor tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan. We furthermore report genome-wide data of two Eneolithic individuals (~5,400 years before present) associated with the Botai culture in northern Kazakhstan. We find that inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries. This genetic separation is well mirrored by geography. The ancient Botai genomes suggest yet another layer of admixture in inner Eurasia that involves Mesolithic hunter-gatherers in Europe, the Upper Paleolithic southern Siberians and East Asians. Admixture modeling of ancient and modern populations suggests an overwriting of this ancient structure in the Altai-Sayan region by migrations of western steppe herders, but partial retaining of this ancient North Eurasian-related cline further to the North. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.
- Published
- 2018
6. Direct 14 C dating of equine products preserved in archaeological pottery vessels from Botai and Bestamak, Kazakhstan.
- Author
-
Casanova E, Knowles TDJ, Outram AK, Stear NA, Roffet-Salque M, Zaibert V, Logvin A, Shevnina I, and Evershed RP
- Abstract
Direct and accurate radiocarbon dating of lipid residues preserved in ceramics is a recently established method that allows direct dating of specific food products and their inception in human subsistence strategies. The method targets individual fatty acids originating from animal fats such as ruminant dairy, ruminant adipose, non-ruminant adipose and aquatic fats. Horse lipid residues found in Central Asian pottery vessels are also directly dateable using this new method. Here we present the identification of equine lipid residues preserved in two pottery assemblages from the Neolithic and Eneolithic in Kazakhstan and their direct
14 C dating. The site of Botai, previously radiocarbon-dated to the 4th millennium BC, was used as a reference to evaluate the dates obtained directly on horse lipids. The direct dating of equine products extracted from Botai potsherds are shown to be compatible with previous14 C dates at the site. The site of Bestamak, lacking previous14 C measurements, had been relatively dated to the Neolithic based on pottery typologies. The direct dating of equine residues made it possible to anchor the pottery assemblage of Bestamak in the 6th millennium BC confirming their Neolithic attribution. These findings demonstrate the potential for dating horse products through a compound-specific approach, while highlighting challenges in14 C dating individual fatty acids from lipid extracts in which their abundances differ substantially., Supplementary Information: The online version contains supplementary material available at 10.1007/s12520-022-01630-2., Competing Interests: Conflict of interestThe authors declare no competing interests., (© The Author(s) 2022.)- Published
- 2022
- Full Text
- View/download PDF
7. The origins and spread of domestic horses from the Western Eurasian steppes.
- Author
-
Librado P, Khan N, Fages A, Kusliy MA, Suchan T, Tonasso-Calvière L, Schiavinato S, Alioglu D, Fromentier A, Perdereau A, Aury JM, Gaunitz C, Chauvey L, Seguin-Orlando A, Der Sarkissian C, Southon J, Shapiro B, Tishkin AA, Kovalev AA, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Seregély T, Klassen L, Iversen R, Bignon-Lau O, Bodu P, Olive M, Castel JC, Boudadi-Maligne M, Alvarez N, Germonpré M, Moskal-Del Hoyo M, Wilczyński J, Pospuła S, Lasota-Kuś A, Tunia K, Nowak M, Rannamäe E, Saarma U, Boeskorov G, Lōugas L, Kyselý R, Peške L, Bălășescu A, Dumitrașcu V, Dobrescu R, Gerber D, Kiss V, Szécsényi-Nagy A, Mende BG, Gallina Z, Somogyi K, Kulcsár G, Gál E, Bendrey R, Allentoft ME, Sirbu G, Dergachev V, Shephard H, Tomadini N, Grouard S, Kasparov A, Basilyan AE, Anisimov MA, Nikolskiy PA, Pavlova EY, Pitulko V, Brem G, Wallner B, Schwall C, Keller M, Kitagawa K, Bessudnov AN, Bessudnov A, Taylor W, Magail J, Gantulga JO, Bayarsaikhan J, Erdenebaatar D, Tabaldiev K, Mijiddorj E, Boldgiv B, Tsagaan T, Pruvost M, Olsen S, Makarewicz CA, Valenzuela Lamas S, Albizuri Canadell S, Nieto Espinet A, Iborra MP, Lira Garrido J, Rodríguez González E, Celestino S, Olària C, Arsuaga JL, Kotova N, Pryor A, Crabtree P, Zhumatayev R, Toleubaev A, Morgunova NL, Kuznetsova T, Lordkipanize D, Marzullo M, Prato O, Bagnasco Gianni G, Tecchiati U, Clavel B, Lepetz S, Davoudi H, Mashkour M, Berezina NY, Stockhammer PW, Krause J, Haak W, Morales-Muñiz A, Benecke N, Hofreiter M, Ludwig A, Graphodatsky AS, Peters J, Kiryushin KY, Iderkhangai TO, Bokovenko NA, Vasiliev SK, Seregin NN, Chugunov KV, Plasteeva NA, Baryshnikov GF, Petrova E, Sablin M, Ananyevskaya E, Logvin A, Shevnina I, Logvin V, Kalieva S, Loman V, Kukushkin I, Merz I, Merz V, Sakenov S, Varfolomeyev V, Usmanova E, Zaibert V, Arbuckle B, Belinskiy AB, Kalmykov A, Reinhold S, Hansen S, Yudin AI, Vybornov AA, Epimakhov A, Berezina NS, Roslyakova N, Kosintsev PA, Kuznetsov PF, Anthony D, Kroonen GJ, Kristiansen K, Wincker P, Outram A, and Orlando L
- Subjects
- Animals, Archaeology, Asia, DNA, Ancient, Europe, Genome, Grassland, Phylogeny, Domestication, Genetics, Population, Horses genetics
- Abstract
Domestication of horses fundamentally transformed long-range mobility and warfare
1 . However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3 . Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6 , have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10 . This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12 ., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
8. The genetic history of admixture across inner Eurasia.
- Author
-
Jeong C, Balanovsky O, Lukianova E, Kahbatkyzy N, Flegontov P, Zaporozhchenko V, Immel A, Wang CC, Ixan O, Khussainova E, Bekmanov B, Zaibert V, Lavryashina M, Pocheshkhova E, Yusupov Y, Agdzhoyan A, Koshel S, Bukin A, Nymadawa P, Turdikulova S, Dalimova D, Churnosov M, Skhalyakho R, Daragan D, Bogunov Y, Bogunova A, Shtrunov A, Dubova N, Zhabagin M, Yepiskoposyan L, Churakov V, Pislegin N, Damba L, Saroyants L, Dibirova K, Atramentova L, Utevska O, Idrisov E, Kamenshchikova E, Evseeva I, Metspalu M, Outram AK, Robbeets M, Djansugurova L, Balanovska E, Schiffels S, Haak W, Reich D, and Krause J
- Subjects
- Geography, Humans, Russia, Asian People, Gene Flow
- Abstract
The indigenous populations of inner Eurasia-a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra-harbour tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP). We find that present-day inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a decrease in contributions from so-called 'ancient North Eurasian' ancestry over time, which is detectable only in the northern-most 'forest-tundra' cline. The intermediate 'steppe-forest' cline descends from the Late Bronze Age steppe ancestries, while the 'southern steppe' cline further to the south shows a strong West/South Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia during the first millennium BC. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.
- Published
- 2019
- Full Text
- View/download PDF
9. Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series.
- Author
-
Fages A, Hanghøj K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, McCrory Constantz C, Gamba C, Al-Rasheid KAS, Albizuri S, Alfarhan AH, Allentoft M, Alquraishi S, Anthony D, Baimukhanov N, Barrett JH, Bayarsaikhan J, Benecke N, Bernáldez-Sánchez E, Berrocal-Rangel L, Biglari F, Boessenkool S, Boldgiv B, Brem G, Brown D, Burger J, Crubézy E, Daugnora L, Davoudi H, de Barros Damgaard P, de Los Ángeles de Chorro Y de Villa-Ceballos M, Deschler-Erb S, Detry C, Dill N, do Mar Oom M, Dohr A, Ellingvåg S, Erdenebaatar D, Fathi H, Felkel S, Fernández-Rodríguez C, García-Viñas E, Germonpré M, Granado JD, Hallsson JH, Hemmer H, Hofreiter M, Kasparov A, Khasanov M, Khazaeli R, Kosintsev P, Kristiansen K, Kubatbek T, Kuderna L, Kuznetsov P, Laleh H, Leonard JA, Lhuillier J, Liesau von Lettow-Vorbeck C, Logvin A, Lõugas L, Ludwig A, Luis C, Arruda AM, Marques-Bonet T, Matoso Silva R, Merz V, Mijiddorj E, Miller BK, Monchalov O, Mohaseb FA, Morales A, Nieto-Espinet A, Nistelberger H, Onar V, Pálsdóttir AH, Pitulko V, Pitskhelauri K, Pruvost M, Rajic Sikanjic P, Rapan Papeša A, Roslyakova N, Sardari A, Sauer E, Schafberg R, Scheu A, Schibler J, Schlumbaum A, Serrand N, Serres-Armero A, Shapiro B, Sheikhi Seno S, Shevnina I, Shidrang S, Southon J, Star B, Sykes N, Taheri K, Taylor W, Teegen WR, Trbojević Vukičević T, Trixl S, Tumen D, Undrakhbold S, Usmanova E, Vahdati A, Valenzuela-Lamas S, Viegas C, Wallner B, Weinstock J, Zaibert V, Clavel B, Lepetz S, Mashkour M, Helgason A, Stefánsson K, Barrey E, Willerslev E, Outram AK, Librado P, and Orlando L
- Subjects
- Animals, Asia, Biological Evolution, Breeding history, DNA, Ancient analysis, Domestication, Equidae genetics, Europe, Female, Genetic Variation genetics, Genome genetics, History, Ancient, Male, Phylogeny, Horses genetics
- Abstract
Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management., (Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
10. The first horse herders and the impact of early Bronze Age steppe expansions into Asia.
- Author
-
de Barros Damgaard P, Martiniano R, Kamm J, Moreno-Mayar JV, Kroonen G, Peyrot M, Barjamovic G, Rasmussen S, Zacho C, Baimukhanov N, Zaibert V, Merz V, Biddanda A, Merz I, Loman V, Evdokimov V, Usmanova E, Hemphill B, Seguin-Orlando A, Yediay FE, Ullah I, Sjögren KG, Iversen KH, Choin J, de la Fuente C, Ilardo M, Schroeder H, Moiseyev V, Gromov A, Polyakov A, Omura S, Senyurt SY, Ahmad H, McKenzie C, Margaryan A, Hameed A, Samad A, Gul N, Khokhar MH, Goriunova OI, Bazaliiskii VI, Novembre J, Weber AW, Orlando L, Allentoft ME, Nielsen R, Kristiansen K, Sikora M, Outram AK, Durbin R, and Willerslev E
- Subjects
- Animals, Asia, Chromosomes, Human, Y genetics, DNA, Ancient, DNA, Mitochondrial genetics, Europe, Grassland, History, Ancient, Humans, Language, Whole Genome Sequencing, Asian People genetics, Domestication, Genetic Drift, Genome, Human, Horses, Human Migration history
- Abstract
The Yamnaya expansions from the western steppe into Europe and Asia during the Early Bronze Age (~3000 BCE) are believed to have brought with them Indo-European languages and possibly horse husbandry. We analyzed 74 ancient whole-genome sequences from across Inner Asia and Anatolia and show that the Botai people associated with the earliest horse husbandry derived from a hunter-gatherer population deeply diverged from the Yamnaya. Our results also suggest distinct migrations bringing West Eurasian ancestry into South Asia before and after, but not at the time of, Yamnaya culture. We find no evidence of steppe ancestry in Bronze Age Anatolia from when Indo-European languages are attested there. Thus, in contrast to Europe, Early Bronze Age Yamnaya-related migrations had limited direct genetic impact in Asia., (Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2018
- Full Text
- View/download PDF
11. Ancient genomes revisit the ancestry of domestic and Przewalski's horses.
- Author
-
Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O, de Barros Damgaard P, Mittnik A, Mohaseb AF, Davoudi H, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Crubézy E, Benecke N, Olsen S, Brown D, Anthony D, Massy K, Pitulko V, Kasparov A, Brem G, Hofreiter M, Mukhtarova G, Baimukhanov N, Lõugas L, Onar V, Stockhammer PW, Krause J, Boldgiv B, Undrakhbold S, Erdenebaatar D, Lepetz S, Mashkour M, Ludwig A, Wallner B, Merz V, Merz I, Zaibert V, Willerslev E, Librado P, Outram AK, and Orlando L
- Subjects
- Animals, DNA, Ancient, Genome, Horses anatomy & histology, Phenotype, Phylogeny, Horses classification, Horses genetics
- Abstract
The Eneolithic Botai culture of the Central Asian steppes provides the earliest archaeological evidence for horse husbandry, ~5500 years ago, but the exact nature of early horse domestication remains controversial. We generated 42 ancient-horse genomes, including 20 from Botai. Compared to 46 published ancient- and modern-horse genomes, our data indicate that Przewalski's horses are the feral descendants of horses herded at Botai and not truly wild horses. All domestic horses dated from ~4000 years ago to present only show ~2.7% of Botai-related ancestry. This indicates that a massive genomic turnover underpins the expansion of the horse stock that gave rise to modern domesticates, which coincides with large-scale human population expansions during the Early Bronze Age., (Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2018
- Full Text
- View/download PDF
12. The earliest horse harnessing and milking.
- Author
-
Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A, Zaibert V, Thorpe N, and Evershed RP
- Subjects
- Animals, Female, History, Ancient, Kazakhstan, Lipids analysis, Metacarpal Bones anatomy & histology, Molar anatomy & histology, Seasons, Agriculture history, Animal Husbandry history, Animals, Domestic, Horses anatomy & histology, Milk
- Abstract
Horse domestication revolutionized transport, communications, and warfare in prehistory, yet the identification of early domestication processes has been problematic. Here, we present three independent lines of evidence demonstrating domestication in the Eneolithic Botai Culture of Kazakhstan, dating to about 3500 B.C.E. Metrical analysis of horse metacarpals shows that Botai horses resemble Bronze Age domestic horses rather than Paleolithic wild horses from the same region. Pathological characteristics indicate that some Botai horses were bridled, perhaps ridden. Organic residue analysis, using delta13C and deltaD values of fatty acids, reveals processing of mare's milk and carcass products in ceramics, indicating a developed domestic economy encompassing secondary products.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.