1. Impact of iron sulfate (FeSO4) foliar application on growth, metabolites and antioxidative defense of Luffa cylindrica (Sponge gourd) under salt stress
- Author
-
Muhammad Waqas, Naila Ali, Zaib-un-Nisa, Muhammad Yasin Ashraf, Sheeraz Usman, Anis Ali Shah, Vaseem Raja, and Mohamed A. El-Sheikh
- Subjects
Medicine ,Science - Abstract
Abstract Salt stress is becoming a major issue for the world’s environment and agriculture economy. Different iron [Fe] sources can give an environmentally friendly alternative for salt-affected soil remediation. In this study the effects of Iron sulfate on Luffa cylindrica (Sponge gourd) cultivated in normal and saline water irrigated soil were examined. When FeSO4 (0.01, 0.025, 0.05, 0.1 ppm) were applied to salt affected soil, the length, fresh and dry biomass of sponge gourd plant roots and shoots inclined by an average of 33, 28, 11, 21, 18 and 22%, respectively. In plants irrigated with saline water, leaf count was raised successively (23–115%) with increasing concentration of FeSO4 (0.025-0.1 ppm) compared to stress only plants. The use of FeSO4 boosted sponge gourd growth characteristics in both normal and salt-affected soils compared to respective controls. The application of Iron sulfate under salt stress boosted photosynthetic indices such as chlorophyll a (22%), chlorophyll b (34%), carotenoids (16%), and total chlorophyll levels (22%). Iron sulfate application also exhibited incline in primary (total free amino acids, 50%; total soluble proteins, 46%) and secondary (total phenolics, 9%; flavonoid content, 51%) metabolites in salt-affected soils. Oxidative enzymatic activities such as catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) and DPPH scavenging activity (36%) were also increased by foliar spray of FeSO4 in control and salt stressed L. cylindrica plants. FeSO4 had a considerable impact on the growth and development of Luffa cylindrica in normal and salt-affected soils. It is concluded that FeSO4 application can effectively remediate salt affected soil and improve the production of crop plants.
- Published
- 2024
- Full Text
- View/download PDF