Pauline Poydenot, Cécile Martinat, Jacqueline Gide, Sandrine Baghdoyan, Julien Côme, Benjamin Brinon, Léa Lesueur, Marc Peschanski, Sylvain Roquevière, Yves Maury, Didier Auboeuf, Geneviève Piétu, Marc Lechuga, Denis Furling, Hélène Polvèche, Jérôme Alexandre Denis, Institut des cellules souches pour le traitement et l'étude des maladies monogéniques (I-STEM), Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Généthon, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes (LBMCE), Centre National de la Recherche Scientifique (CNRS)-Institut de biologie physico-chimique (IBPC (FR_550)), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Institut de Myologie, Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université - Faculté de Médecine (SU FM), Sorbonne Université (SU), Centre de Recherche en Myologie, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Centre de recherche en Myologie – U974 SU-INSERM, ANR-16-CE17-0018,SEDUCE,utilisation des cellules souches pour identifier des composés thérapeutiques visant les anomalies de splice(2016), Institut National de la Santé et de la Recherche Médicale (INSERM)-Généthon-Université d'Évry-Val-d'Essonne (UEVE), Gestionnaire, Hal Sorbonne Université, Institut de biologie physico-chimique (IBPC (FR_550)), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Summary There is currently no treatment for myotonic dystrophy type 1 (DM1), the most frequent myopathy of genetic origin. This progressive neuromuscular disease is caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors, resulting in alternative splicing misregulation. By combining human mutated pluripotent stem cells and phenotypic drug screening, we revealed that cardiac glycosides act as modulators for both upstream nuclear aggregations of DMPK mRNAs and several downstream alternative mRNA splicing defects. However, these occurred at different drug concentration ranges. Similar biological effects were recorded in a DM1 mouse model. At the mechanistic level, we demonstrated that this effect was calcium dependent and was synergic with inhibition of the ERK pathway. These results further underscore the value of stem-cell-based assays for drug discovery in monogenic diseases., Graphical Abstract, Highlights • Myotonic dystrophy type 1 hPSCs were adapted for high content screening • FDA-approved cardiac glycosides normalize in vitro and in vivo DM1 biological markers • Cardiac glycosides synergize with the ERK pathway to normalize DM1 biomarkers • This study emphasizes the value of human pluripotent stem cells for drug discovery, Physiology; Molecular Biology; Cell Biology