31 results on '"Yuri Nikolaevich Radayev"'
Search Results
2. On the Neuber theory of micropolar elasticity. A pseudotensor formulation
- Author
-
Vladimir Aleksandrovich Kovalev, Eugenii Valeryevich Murashkin, and Yuri Nikolaevich Radayev
- Subjects
micropolarity ,elasticity ,continuum ,microrotation ,pseudoscalar ,relative tensor ,weight ,constitutive equation ,Mathematics ,QA1-939 - Abstract
The present paper deals with a pseudotensor formulation of the Neuber theory of micropolar elasticity. The dynamic equations of the micropolar continuum in terms of relative tensors (pseudotensors) are presented and discussed. The constitutive equations for a linear isotropic micropolar solid is given in the pseudotensor form. The final forms of the dynamic equations for the isotropic micropolar continuum in terms of displacements and microrotations are obtained in terms of relative tensors. The refinements of Neuber's dynamic equations are discussed. Those are also considered in the cylindrical coordinate net.
- Published
- 2020
- Full Text
- View/download PDF
3. On a micropolar theory of growing solids
- Author
-
Eugenii Valeryevich Murashkin and Yuri Nikolaevich Radayev
- Subjects
micropolar hemitropic continuum ,microrotation ,pseudoscalar ,relative tensor ,3d printing ,propagating growing surface ,stress ,constitutive equation ,rational relative invariant ,differential constraint ,complete system ,Mathematics ,QA1-939 - Abstract
The present paper is devoted to the problem of boundary conditions formulation in the growing micropolar solid mechanics. The static equations of the micropolar continuum in terms of relative tensors (pseudotensors) are derived due to virtual work principle for a solid of constant staff. The constitutive quadratic form of the elastic potential (treated as an absolute scalar) for a linear hemitropic micropolar solid is presented and discussed. The constitutive equations for symmetric and antisymmetric parts of force and couple stress tensors are given. The final forms of the static equations for the hemitropic micropolar continuum in terms of displacements and microrotations rates are obtained including the case of growing processes. A transformation of the equilibrium equations is proposed to obtain boundary conditions on the propagating growing surface in terms of relative tensors in the form of differential constraints. Those are valid for a wide range of materials and metamaterials. The algebra of rational relative invariants is intensively used for deriving the constitutive relations on the growing surface. Systems of joint algebraic rational relative invariants for force, couple stress tensors and also unit normal and tangent vectors to propagating growing surface are obtained, including systems of invariants sensitive to mirror reflections and 3D-space inversions.
- Published
- 2020
- Full Text
- View/download PDF
4. On a differential constraint in the continuum theory of growing solids
- Author
-
Eugenii Valeryevich Murashkin and Yuri Nikolaevich Radayev
- Subjects
3d printing ,surface growth ,stress ,constitutive equation ,rational invariant ,differential constraint ,complete system ,Mathematics ,QA1-939 - Abstract
The present paper is devoted to the problem of boundary conditions formulation for asymmetric problems in the mechanics of growing solids (MGS). The boundary conditions on the propagating growing surface (PGS) is the fundamental problem of this branch of mechanics. Results from the algebra of rational invariants are used for deriving constitutive equations on PGS. Geometrically and mechanically consistent differential constraints are obtained on PGS. Those are valid for a wide range of materials and metamaterials. A number of constitutive equations on PGS of different complexity levels are proposed. The boundary conditions simultaneously can be treated as differential constraints within the frameworks of variational formulations. The differential constraints imply an experimental identification of constitutive functions. For this reason, the obtained results furnish a general ground in applied problems of the MGS.
- Published
- 2019
5. On plane thermoelastic waves in hemitropic micropolar continua
- Author
-
Yuri Nikolaevich Radayev and Vladimir Aleksandrovich Kovalev
- Subjects
hemitropic ,micropolar ,thermoelastic ,plane wave ,wavenumber ,polarization ,complex amplitude ,athermal wave ,Mathematics ,QA1-939 - Abstract
The paper deals with the coupled heat transport and dynamic equations of the hemitropic thermoelastic micropolar continuum formulated in terms of displacements, microrotations and temperature increment which are to be determined in applied problems. The mechanism of thermal conductivity is considered as simple thermodiffusion. Hemitropic constitutive constants are reduced to a minimum set nevertheless retaining hemitropic constitutive behaviour and thermoelastic semi-isotropy. Solutions of thermoelastic coupled equations in the form of propagating plane waves are studied. Their spatial polarizations are determined. An algebraic bicubic equation for the determination of wavenumbers is obtained. It is found that for a coupled thermoelastic wave actually there are exactly three normal complex wavenumbers. Athermal wave is also investigated. Spatial polarizations in this case form (together with the wave vector) a spatial trihedron of mutually orthogonal directions. For an athermal wave there are (depending on the case) either two real normal wavenumbers or single wavenumber.
- Published
- 2019
- Full Text
- View/download PDF
6. Asymmetric tensor representations in micropolar continuum mechanics theories
- Author
-
Yuri Nikolaevich Radayev
- Subjects
micropolar continuum ,force stress ,couple stress ,asymmetric tensor ,eigenvalue ,eigenvector ,asymptotic direction ,Mathematics ,QA1-939 - Abstract
In this paper, new representations of three-dimensional asymmetric stress tensor and the corresponding form of the differential equilibrium equations are given. Asymmetric theories of solid mechanics continues to attract attention in connection with the necessity of mathematical modelling of the mechanical behaviour of the advanced materials. The study is restricted to such asymmetric second rank tensors, for which it is still possible to keep the notion of real eigenvalues, but not to accept the mutual orthogonality of the directors of the principal trihedron. The exact algebraic formulation of these asymmetry conditions is discussed. The study extends the dyadic tensor representations of the symmetric stress tensor based on the notion of asymptotic directions. The obtained results are a clear evidence in favor of algebraic hyperbolicity both the symmetric and asymmetric second rank tensors in three-dimensional space.
- Published
- 2019
- Full Text
- View/download PDF
7. Coupled thermodynamic orhogonality in non-linear models of type-III thermoelasticity
- Author
-
Vladimir Aleksandrovich Kovalev and Yuri Nikolaevich Radayev
- Subjects
thermoelasticity ,maximum principle ,irreversible process ,thermodynamic orthogonality ,thermodynamic force ,thermodynamic flux ,constitutive law ,Mathematics ,QA1-939 - Abstract
The present study is devoted to a derivation of non-linear constitutive equations for the non-linear Green-Naghdi type-IIIthermoelastic model on the basis of the principle of thermodynamic (or thermomechanical) orthogonality.The latter was proposed by Ziegler as an extention to the Onsager linearirreversible thermodynamics. It states that the irreversible constituent parts of thermodynamic currents (velocities)are orthogonal to the convex dissipation potential level surface in the space of thermodynamic forces for anyprocess of heat propagation in a solid. Non-linear constitutive laws of the heat propagationcomplying with the principle of thermomechanical orthogonality are obtained and discussed.
- Published
- 2013
- Full Text
- View/download PDF
8. On a fine localization of the Mathieu azimuthal numbers by Cassini ovals
- Author
-
Yuri Nikolaevich Radayev and Margarita Vladimirovna Taranova
- Subjects
mathieu equation ,eigenvalue ,azimuthal number ,sturm–liouville problem ,wavenumber ,wave function ,diagonalization ,gerschgorin circle ,cassini oval ,doubly stochastic matrix ,Mathematics ,QA1-939 - Abstract
The study is devoted to numerical and analytical problems concerning generating periodic and antiperiodic solutions of the angular (circumferential) Mathieu equation obtained for the circumferential harmonics of an elliptic cylinder. The Mathieu eigenvalues localization problem and computations of elliptic azimuthal numbers are discussed. First, the Sturm–Liouville eigenvalue problem for the angular Mathieu equation is reformulated as an algebraic eigenvalue problem for an infinite linear self-adjoint pentadiagonal matrix operator acting in the complex bi-infinite sequence space $l_2$. The matrix operator is then represented as a sum of a diagonal matrix and an infinite symmetric doubly stochastic matrix, which is interpreted as a finite perturbation imposed on the diagonal matrix. Effective algorithms for computations of the Mathieu eigenvalues and associated circumferential harmonics are discussed. Azimuthal numbers notion is extended to the case of elastic and thermoelastic waves propagating in a long elliptic waveguide. Estimations of upper and low bounds and thus localizations of the angular Mathieu eigenvalues and elliptic azimuthal numbers are given. Those are obtained by algebraic methods employing the Gerschgorin theorems and Cassini ovals technique. The latter provides more accurate solution of the Mathieu eigenvalues localization problem.
- Published
- 2013
- Full Text
- View/download PDF
9. К теории гемитропных тензоров четвертого ранга в трехмерных пространствах Евклида
- Author
-
Eugenii Valeryevich Murashkin and Yuri Nikolaevich Radayev
- Subjects
Mechanics of Materials ,Applied Mathematics ,Modeling and Simulation ,Condensed Matter Physics ,Mathematical Physics ,Software ,Analysis - Abstract
Рассматриваются представляющие интерес с точки зрения механики микрополярных континуумов тензоры с постоянными компонентами, полуизотропные тензоры и псевдотензоры. Обсуждаются свойства и способы координатного представления тензоров и псевдотензоров с постоянными компонентами. На основе неконвенционального определения полуизотропного тензора четвертого ранга приводится координатное представление в терминах дельт Кронекера и метрических тензоров. Выясняются условия приведения произвольного (arbitrary) полуизотропного тензора четвертого ранга к тензору с постоянными компонентами. Координатные представления для определяющих тензоров и псевдотензоров, использующихся при математическом моделировании линейных гемитропных микрополярных континуумов, даны в терминах метрического тензора. Устанавливаются условия ковариантного постоянства псевдотензоров с постоянными компонентами и полуизотропных тензоров.
- Published
- 2022
- Full Text
- View/download PDF
10. On covariant non-constancy of distortion and inversed distortion tensors
- Author
-
Yuri Nikolaevich Radayev, Eugenii Valeryevich Murashkin, and Timofey K. Nesterov
- Subjects
Mechanics of Materials ,Applied Mathematics ,Modeling and Simulation ,Condensed Matter Physics ,Mathematical Physics ,Software ,Analysis - Abstract
Обсуждаются вопросы ковариантного постоянства тензоров и псевдотензоров произвольной валентности и веса в евклидовом пространстве. Приводятся минимально необходимые сведения из алгебры и анализа псевдотензоров. Выясняются условия ковариантного постоянства псевдотензоров. Рассматриваются примеры ковариантно постоянных тензоров и псевдотензоров из многомерной геометрии. Речь, в частности, идет о фундаментальном ориентирующем псевдоскаляре, целые степени которого удовлетворяют условию ковариантного постоянства. В работе продемонстрировано, что тензоры дисторсии и обратной дисторсии на самом деле не являются ковариантно постоянными, в противовес указаниям на ковариантное постоянство дисторсии и обратной дисторсии, которые встречаются в литературных источниках по нелинейной механике континуума.
- Published
- 2022
- Full Text
- View/download PDF
11. Об определяющих псевдоскалярах гемитропных микрополярных сред в инверсных координатных системах
- Author
-
Eugenii Valeryevich Murashkin and Yuri Nikolaevich Radayev
- Subjects
Physics ,Mechanics of Materials ,Applied Mathematics ,Modeling and Simulation ,Condensed Matter Physics ,Mathematical Physics ,Software ,Analysis - Abstract
Обсуждаются определяющие псевдоскаляры, связанные с теорией гемитропного микрополярного континуума. Приводятся основные понятия алгебры псевдотензоров. Определяется псевдотензорная форма гемитропного микрополярного упругого потенциала, основанная на 9 определяющих псевдоскалярах (из них 3 псевдоскаляра и 6 абсолютных скаляров). Вычисляются веса определяющих псевдоскаляров. С помощью фундаментального ориентирующего псевдоскаляра веса \(+1\) формулируются правила преобразования определяющих псевдоскаляров. Выводятся определяющие уравнения гемитропного микрополярного упругого континуума. Обсуждаются уравнения динамики гемитропного микрополярного континуума в терминах псевдотензоров в право- и левоориентированных декартовых системах координат. Показано наличие инверсных мод наряду с прямыми при распространении волн по гемитропному микрополярному континууму.
- Published
- 2021
- Full Text
- View/download PDF
12. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames
- Author
-
Eugenii Valeryevich Murashkin and Yuri Nikolaevich Radayev
- Subjects
Physics::Fluid Dynamics ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,QA1-939 ,Mathematics - Abstract
The paper is devoted to the constitutive pseudoscalars associated with the theory of hemitropic micropolar continuum. The basic concepts of pseudotensor algebra are presented. The pseudotensor form of the hemitropic micropolar elastic potential is given, based on 9 constitutive pseudoscalars (3 are pseudoscalars and 6 are absolute scalars). The weights of the constitutive pseudoscalars are calculated. The fundamental orienting pseudoscalar of weight \(+1\) is used to formulate transformation rules for constitutive pseudoscalars. The governing equations of the hemitropic micropolar elastic continuum are derived. The equations of the dynamics of the hemitropic micropolar continuum are discussed in terms of pseudotensors in right- and left-handed Cartesian coordinate systems. The presence of inverse modes along with normal ones is shown for wave propagation across the hemitropic micropolar continuum.
- Published
- 2021
13. On Wave Solutions of Dynamic Equations of Hemitropic Micropolar Thermoelasticity
- Author
-
V. A. Kovalev and Yuri Nikolaevich Radayev
- Subjects
Physics ,polarization ,thermoelastic ,General Computer Science ,lcsh:Mathematics ,Mechanical Engineering ,General Mathematics ,Mathematical analysis ,Computational Mechanics ,plane wave ,lcsh:QA1-939 ,wavenumber ,Mechanics of Materials ,micropolar ,hemitropic ,athermal wave ,Dynamic equation - Abstract
Coupled equations of hemitropic thermoelastic micropolar continuum formulated in terms of displacement vector, microrotation vector and temperature increment are considered. Thermodiffusion mechanism of heat transport is assumed. Hemitropic thermoelastic constitutive constants are reduced to a minimal set retaining hemitropic constitutive behaviour. Coupled plane waves propagating in thermoelastic media are studied. Spatial polarizations of the coupled plane waves are determined. Bicubic equations for wavenumbers are obtained and then analyzed. Three normal complex wavenumbers for plane waves are found. Equations relating to the complex amplitudes of displacements, microrotations and temperature increment are obtained. Athermal plane waves propagation is also discussed. It is shown that polarization vectors and the wave vector are mutually orthogonal. Wavenumbers are found as roots of a biquadratic equation. For athermal plane wave depending on the case two or single real normal wavenumbers are obtained.
- Published
- 2019
- Full Text
- View/download PDF
14. Правило множителей в ковариантных формулировках микрополярных теорий механики континуума
- Author
-
Yuri Nikolaevich Radayev
- Subjects
Physics ,Couple stress ,Applied Mathematics ,02 engineering and technology ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Mechanics of Materials ,Modeling and Simulation ,0103 physical sciences ,Mathematical Physics ,Software ,Analysis ,Mathematical physics - Abstract
Рассматривается геометрически линейная модель микрополярного упругого тела (моментного континуума, континуума Коссера). Обсуждаются подходы к моделированию деформации таких континуумов. В качестве мер деформации выбираются: симметричный тензор малой деформации, вектор относительного микровращения и пространственный градиент вектора полного микровращения. Сформулированы принцип виртуальных перемещений и его обобщение, полученное с помощью метода неопределенных множителей Лагранжа, на основе которых выполнено построение микрополярной теории упругости. Важнейшей отличительной особенностью выступает отсутствие в вариационном уравнении вкладов работ внутренних силовых факторов, что позволяет придать принципу виртуальных перемещений весьма простую аналитическую форму. Подробно исследуется модель гемитропного микрополярного тела. Работа может рассматриваться как скрипт основных уравнений теории линейной микрополярной упругости, которые последовательно выводятся из принципа виртуальных перемещений с помощью правила множителей Лагранжа и в итоге образуют универсальную ковариантную формулировку всей теории.
- Published
- 2018
- Full Text
- View/download PDF
15. К 60-летию профессора Александра Владимировича Манжирова
- Author
-
Yuri Nikolaevich Radayev and Vladimir Pavlovich Radchenko
- Subjects
Engineering ,Scientific biography ,Contact mechanics ,Mechanics of Materials ,business.industry ,Applied Mathematics ,Modeling and Simulation ,Condensed Matter Physics ,business ,Mathematical Physics ,Software ,Analysis ,Classics - Abstract
On May, 24, 2017 the 60th jubilee of Prof. A.V. Manzhirov was celebrated at Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences. Prof. A.V. Manzhirov is known as a prominent scientist in the field of mechanics and applied mathematics. The principal directions of his academic activity are Mechanics of Growing Solids, Theory of Creep and Viscoelasticity, Biomechanics, Contact Mechanics, Tribology, Integral Equations and their numerous applications. The present dedication is devoted to the Prof. A.V. Manzhirov’s scientific biography and contains the list of his selected publications.
- Published
- 2017
- Full Text
- View/download PDF
16. К 85-летию со дня рождения профессора Д. Д. Ивлева
- Author
-
Yuri Nikolaevich Radayev and Vladimir Pavlovich Radchenko
- Subjects
Mathematical theory ,Mechanics of Materials ,Applied Mathematics ,Modeling and Simulation ,Mathematics education ,Post graduate ,Condensed Matter Physics ,Approximate solution ,Mathematical Physics ,Software ,Analysis - Abstract
Dyuis D. Ivlev (1930-2013) is an outstanding scientist in the fields of Continuum Mechanics (theory of Perfect Plasticity and Fracture) and AppliedMathematics. He has much contributed to the mathematical theory of plasticity, especially to study of hyperbolic three-dimensional problems of theperfect plasticity. Dyuis D. Ivlev was born in Chuvashia Republick, Russia, on September 6, 1930. In 1948 he left Chuvashia and after passing examinations entered Moscow State University. He is a Mechanical Engineering graduate(1953) of Moscow State University. In 1953 he continued his research workas a post graduate student of the same university. In 1956 he received PhDin Solid Mechanics from Moscow State University. The title of his PhD dissertation work is Approximate Solution of Elasti-Plastic Problems by thesmall parameter method. Three years later he was awarded DSc (Phys. &Math.) Degree from Moscow State University for his dissertation study Three-Dimensional Problem of the Theory of Perfect Plasticity. Since 1959he has been working as head of the Department of Elasticity and Plasticityof Voronezh State University, then (1966-1970) as Prof. of Bauman StateTechnical University and (1971-1982) as head of the Department of Higher Mathematics of Russian Polytechnical University. In 1982 he returned toChuvashia working in Chuvash State University (until 1993) and ChuvashState Pedagogical University (1993-2013) as head of Department of Mathematical Analysis. Prof. Dyuis D. Ivlev has been a member of National Committee on Theoretical and Applied Mechanics, Scientific Council on Problems of SolidMechanics, Mathematics and Mechanics Expert Council of the Higher Attestation Committee. He is the author of several books on theory of perfectplasticity and its applications and nearly 250 papers on the subject.
- Published
- 2016
- Full Text
- View/download PDF
17. Divergent conservation laws in hyperbolic thermoelasticity
- Author
-
Yuri Nikolaevich Radayev and Evgenii V. Murashkin
- Subjects
Physics ,Conservation law ,Classical mechanics - Published
- 2018
- Full Text
- View/download PDF
18. On deformation of complex continuum immersed in a plane space
- Author
-
Yuri Nikolaevich Radayev, Evgenii V. Murashkin, and V. A. Kovalev
- Subjects
Physics ,Continuum (topology) ,Plane (geometry) ,Geometry ,Deformation (meteorology) ,Space (mathematics) - Published
- 2018
- Full Text
- View/download PDF
19. Объективные ротационно-инвариантные формы термоупругих лагранжианов
- Author
-
Vladimir Aleksandrovich Kovalev, Владимир Александрович Ковалeв, and Yuri Nikolaevich Radayev
- Subjects
Continuum mechanics ,Applied Mathematics ,media_common.quotation_subject ,Constitutive equation ,Mathematical analysis ,Condensed Matter Physics ,Inertia ,Principle of indifference ,Principle of least action ,Thermoelastic damping ,Classical mechanics ,Mechanics of Materials ,Modeling and Simulation ,Rotational invariance ,Role playing ,Mathematical Physics ,Software ,Analysis ,Mathematics ,media_common - Abstract
В представляемой работе приводится построение полной системы независимых ротационно-инвариантных функциональных аргументов для лагранжиана нелинейного микрополярного (микроморфного) термоупругого континуума второго типа, который включает тензор конечной деформации Коши-Грина, температурное смещение, референциальный градиент температурного смещения, три вектора экстрадеформации и три несимметричных тензора экстрадеформации второго ранга. Дополнительные (экстра) реперы, связанные с микроэлементами, предполагаются нежесткими, что допускает наиболее общую аффинную экстрадеформацию микроэлементов континуума. Исходя из принципа наименьшего действия Гамильтона получены 4-ковариантные уравнения термоупругого поля в микрополярном континууме в канонической форме Эйлера-Лагранжа. Сформулированы дифференциальные и функциональные условия ротационной инвариантности плотности действия. Последние затем используются с целью поиска ротационно-инвариантных функциональных аргументов лагранжиана. Найдена система независимых ротационно-инвариантных функциональных аргументов лагранжиана. Дается формальное доказательство ее полноты. Построены удовлетворяющие принципу объективности формы определяющих уравнений гиперболического микрополярного термоупругого континуума, соответствующие ротационно-инвариантному лагранжиану.
- Published
- 2015
- Full Text
- View/download PDF
20. Гиперболические теории и задачи механики континуума
- Author
-
Yuri Nikolaevich Radayev, Владимир Александрович Ковалeв, and Vladimir Aleksandrovich Kovalev
- Subjects
Physics ,Mechanics of Materials ,Applied Mathematics ,Modeling and Simulation ,Condensed Matter Physics ,Mathematical Physics ,Software ,Analysis ,Mathematical physics - Abstract
Рассматриваются теории и задачи той части термомеханики континуума, которая не может быть корректно сформулирована вне рамок гиперболических уравнений и систем таких уравнений. При этом внимание сфокусировано на двух относительно новых гиперболических теориях: теории трeхмерного идеально пластического течения и теории микрополярной термоупругости второго типа (type-II thermoelasticity). Исследуются трeхмерные статические и кинематические уравнения теории идеальной пластичности Ишлинского-Ивлева с точки зрения их аналитической классификации, определения характеристических направлений и возможных подходов к построению интегрируемых соотношений. Новые подходы к гиперболическим формулировкам связываются с введением дополнительных базисных переменных, когда допустимыми признаются не только термодинамические переменные состояния (так называемые «медленные переменные»), ассоциированные с термическими и микроструктурными свойствами континуума, но и их референциальные градиенты («быстрые переменные»). Развивается гиперболическая термомеханика микрополярных термоупругих сред на основе теоретико-полевой схемы и с помощью вариационного функционала действия и принципа наименьшего действия.
- Published
- 2015
- Full Text
- View/download PDF
21. On Thermodynamics of Wave Processes of Heat Transport
- Author
-
Evgenii V. Murashkin and Yuri Nikolaevich Radayev
- Subjects
Physics ,Thermal science ,Thermoelastic damping ,Maximum principle ,Entropy production ,Constitutive equation ,Dissipative system ,Thermodynamics ,Thermal conduction ,Transport phenomena ,Physics::Geophysics - Abstract
The present paper is devoted to formulations of constitutive equations for the non-linear Green-Naghdi type-III thermoelastic continuum consistent with the principle of thermodynamic (or thermomechanical) orthogonality. Contrary to the original Green-Naghdi model the Lagrange description is employed. The principle of thermodynamic orthogonality originally proposed by Ziegler as a generalization of the Onsager linear irreversible thermodynamics states that the irreversible constituent of thermodynamic flux is orthogonal to the convex dissipative potential level surface in the space of thermodynamic forces for any process of heat transport. The principle of the thermomechanical orthogonality takes its origin from the von Mises maximum principle of the perfect plasticity, where it provides existence of a yield surface, its convexity, and the associated flow rule. Non-linear constitutive laws of heat propagation as of type-III thermoelasticity complying with the principle of thermomechanical orthogonality are discussed. Important for applied thermoelasticity cases covered by type-III theory are studied: GNI/CTE–conventional thermoelasticity based on the Fourier heat conduction law and GNII–dissipationless hyperbolic thermoelasticity. In the latter case the internal entropy production equals zero for any heat transport process having the form of the undamped thermoelastic wave propagating at finite speed.
- Published
- 2017
- Full Text
- View/download PDF
22. Прохождение термоупругого гармонического сигнала через волновод с теплопроницаемой стенкой
- Author
-
V. A. Kovalev, Владимир Александрович Ковалeв, Yuri Nikolaevich Radayev, and Roman Alexandrovich Revinskiy
- Subjects
business.industry ,Applied Mathematics ,Mathematical analysis ,Separation of variables ,Fundamental frequency ,Impulse (physics) ,Condensed Matter Physics ,Physics::Geophysics ,Condensed Matter::Materials Science ,Thermoelastic damping ,Optics ,Mechanics of Materials ,Modeling and Simulation ,Heat transfer ,Thermal ,Wavenumber ,Boundary value problem ,business ,Mathematical Physics ,Software ,Analysis ,Mathematics - Abstract
The paper is devoted to a study of coupled harmonic thermoelastic impulse guided propagation through an infinite circular cylinder. Heat interchanging is supposed to take place between sidewall of the waveguide and environment. The analysis is carried out according to the principles of coupled generalized thermoelasticity theory of type III (GNIII-thermoelasticity). This theory combines thermodiffusion and wave mechanisms of heat transfer in solids including as limiting cases both the theories: classical thermoelasticity (GNI/CTE) and the theory of hyperbolic thermoelasticity (GNII ). The latter permits field-theoretic formulation and leads to the field equations of hyperbolic analytical type. Closed solution of the coupled GNIII-thermoelasticity equations satisfying the boundary conditions on the surface of waveguide is obtained by separation of variables. The analysis of frequency equation is given and wave numbers and modes of coupled thermoelastic waves of arbitrary order are obtained. The problems of coupled thermal and dynamic impulse propagation in the form of plane and normal waves in a free from tractions thermoisolated waveguide have been studied in our previous papers.
- Published
- 2011
- Full Text
- View/download PDF
23. Оптимальные системы одномерных подалгебр алгебры симметрий трeхмерных уравнений математической теории пластичности
- Author
-
V. A. Kovalev, Владимир Александрович Ковалeв, and Yuri Nikolaevich Radayev
- Subjects
Algebra ,Pure mathematics ,Mechanics of Materials ,Applied Mathematics ,Modeling and Simulation ,Algebra over a field ,Plasticity ,Condensed Matter Physics ,Mathematical Physics ,Software ,Analysis ,Symmetry (physics) ,Mathematics - Published
- 2011
- Full Text
- View/download PDF
24. Волновые числа термоупругих волн в волноводе с теплообменом на боковой стенке
- Author
-
Margarita Vladimirovna Taranova and Yuri Nikolaevich Radayev
- Subjects
Applied Mathematics ,Mathematical analysis ,Harmonic (mathematics) ,Fundamental frequency ,Condensed Matter Physics ,Square (algebra) ,Physics::Geophysics ,Thermoelastic damping ,Mechanics of Materials ,Modeling and Simulation ,Heat transfer ,Cylinder ,Waveguide (acoustics) ,Wavenumber ,Mathematical Physics ,Software ,Analysis ,Mathematics - Abstract
The paper presents a study of wavenumbers of coupled harmonic thermoelastic waves propagating via an infinite circular cylinder for higher azimuthal order. Heat interchanging between sidewall of the waveguide and environment is assumed. The analysis is carried in the frameworks of coupled generalized thermoelasticity theory of type III (GNIII-thermoelasticity). This theory synthesizes thermodiffusion and wave mechanisms of heat transfer in solids including as limiting cases both the theories: classical thermoelasticity (GNI/CTE) and the theory of hyperbolic thermoelasticity (GNII). The latter permits field-theoretic formulation and leads to the field equations of hyperbolic analytical type. The two principal problems: separation of 32 independent single-valued square radicals involved in the frequency equation and more accurate computation of the real-valued wavenumbers are resolved and discussed.
- Published
- 2011
- Full Text
- View/download PDF
25. Coupled Multi-Physics Modelling in Continuum Mechanics
- Author
-
Evgenii V. Murashkin and Yuri Nikolaevich Radayev
- Subjects
Physics ,Classical mechanics ,Continuum mechanics - Published
- 2018
- Full Text
- View/download PDF
26. Microrotation Waves Propagating in a Cylindrical Waveguide
- Author
-
Yuri Nikolaevich Radayev, Evgenii V. Murashkin, and V. A. Kovalev
- Subjects
Physics ,Optics ,business.industry ,Cylindrical waveguide ,business - Published
- 2018
- Full Text
- View/download PDF
27. Wave propagation problem for a micropolar elastic waveguide
- Author
-
V. A. Kovalev, Evgenii V. Murashkin, and Yuri Nikolaevich Radayev
- Subjects
Physics ,History ,Elastic waveguide ,Wave propagation ,Acoustics ,0502 economics and business ,05 social sciences ,050211 marketing ,050203 business & management ,Computer Science Applications ,Education - Abstract
A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.
- Published
- 2018
- Full Text
- View/download PDF
28. On 60th Anniversary of Professor Alexander Vladimirovich Manzhirov
- Author
-
Yuri Nikolaevich Radayev
- Subjects
History ,Computer Science Applications ,Education ,Mathematics - Published
- 2018
- Full Text
- View/download PDF
29. Full thermomechanical coupling in modelling of micropolar thermoelasticity
- Author
-
Evgenii V. Murashkin and Yuri Nikolaevich Radayev
- Subjects
Physics ,History ,Thermomechanical coupling ,Composite material ,Computer Science Applications ,Education - Abstract
The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.
- Published
- 2018
- Full Text
- View/download PDF
30. Analytical Solution of Cylindrical Wave Problem in the Frameworks of Micropolar Elasticity
- Author
-
Evgenii V. Murashkin and Yuri Nikolaevich Radayev
- Subjects
Physics ,Cylindrical wave ,History ,Differential equation ,Mathematical analysis ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Computer Science Applications ,Education ,Vortex ,Coupled differential equations ,Cylindrical waveguide ,Elasticity (economics) ,0210 nano-technology - Abstract
Propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The coupled system of vector differential equations of micropolar elasticity is presented. The translational displacements and microrotations in the coupled wave are decomposed into potential and vortex parts. The coupled differential equations are then reduced to uncoupled ones. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency waves in the cylindrical domain.
- Published
- 2017
- Full Text
- View/download PDF
31. On a Physical Field Theory of Micropolar Thermoelasticity
- Author
-
Evgenii V. Murashkin, V. A. Kovalev, and Yuri Nikolaevich Radayev
- Subjects
History ,Conservation law ,Continuum (measurement) ,Mathematical analysis ,Constitutive equation ,Physics::Geophysics ,Computer Science Applications ,Education ,Principle of least action ,Physics::Fluid Dynamics ,Condensed Matter::Materials Science ,Thermoelastic damping ,Classical mechanics ,Finite strain theory ,Homogeneous space ,Covariant transformation ,Mathematics - Abstract
A non-linear mathematical model of thermoelastic micropolar continuum is developed. The model is presented in terms of 4-covariant field theoretical formalism. Lagrangian density for thermoelastic continuum with three micropolar directors is given and the least action principle is formulated. Corresponding field equations of micropolar thermoelasticity are obtained. Variational symmetries of the thermoelastic action are used to formulate covariant conservation laws. Following the usual procedure, micropolar thermoelastic Lagrangians are represented as functions of independent rotationally invariant arguments. The latter constitutes a complete system of objective finite strain measures of micropolar thermoelasticity. Constitutive equations of micropolar thermoelasticity are obtained and discussed.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.