1. Identification of anthropogenic source of Pb and Cd within two tropical seagrass species in South China: Insight from Pb and Cd isotopes
- Author
-
Ling Zhang, Yunchao Wu, Zhijian Jiang, Yuzheng Ren, Jinlong Li, Jizhen Lin, Zhixin Ni, and Xiaoping Huang
- Subjects
Seagrass ,Heavy metal ,Accumulation ,Source ,Pb and Cd isotopes ,South China ,Environmental pollution ,TD172-193.5 ,Environmental sciences ,GE1-350 - Abstract
Seagrass beds are susceptible to deterioration and heavy metals represent a crucial impact factor. The accumulation of heavy metal in two tropical seagrass species were studied in South China in this study and multiple methods were used to identify the heavy metal sources. E. acoroides (Enhalus acoroides) and T. hemperichii (Thalassia hemperichii) belong to the genus of Enhalus and Thalassia in the Hydrocharitaceae family, respectively. Heavy metal concentrations in the two seagrasses followed the order of Cr > Zn > Cu > Ni > As > Pb > Co > Cd based on the whole plant, and their bioconcentration factors were 31.8 ± 29.3 (Cr), 5.7 ± 1.3 (Zn), 7.0 ± 3.8 (Cu), 3.0 ± 1.9 (Ni), 1.2 ± 0.3 (As), 1.7 ± 0.9 (Pb), 9.1 ± 11.1 (Co) and 2.8 ± 0.6 (Cd), indicating the intense enrichment in Co and Cr within the two seagrasses. The two seagrasses were prone to accumulate all the listed heavy metals (except for As in E. acoroides), especially Co (BCFs of 1124) and Cr (BCFs of 2689) in the aboveground parts, and the belowground parts of both seagrasses also accumulated most metals (BCFs of 27) excluding Co and Pb. The Pb isotopic ratios (mean 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb values of 38.2054, 15.5000 and 18.3240, respectively) and Cd isotopic compositions (δ114/110Cd values ranging from –0.09‰ to 0.58‰) within seagrasses indicated the anthropogenic sources of Pb and Cd including coal combustion, traffic emissions and agricultural activities. This study described the absorption characteristics of E. acoroides and T. hemperichii to some heavy metals, and further demonstrated the successful utilization of Pb and Cd isotopes as discerning markers to trace anthropogenic origins of heavy metals (mainly Pb and Cd) in seagrasses. Pb and Cd isotopes can mutually verify and be helpful to understand more information in pollution sources and improve the reliability of conclusion deduced from concentrations or a single isotope.
- Published
- 2024
- Full Text
- View/download PDF