Haifeng Teng, Liang Dong, Jiawei Xu, Chunke Zhang, Chunsheng Fu, Rumin Zhang, Yunbo Sun, Wenqing Sun, Yu Li, Ximing Wang, Yun He Pan, Yun Li, Wei Zhang, Feng Gao, Jiping Zhao, Shengyu Zhou, Tian Tian Liu, Fusen Zhang, Xuesong Zhao, Lixia Yin, Jintao Zhang, Wei Tan, Yu. Sun, Fayan Zhang, Kang Ning, Xiuhe Ouyang, Jiguang Yu, Chunting Wang, Qing Hu, and Jinlai Li
Shengyu Zhou,1,2,* Jiawei Xu,1,* Wenqing Sun,3 Jintao Zhang,1 Fayan Zhang,4 Xuesong Zhao,5 Ximing Wang,6 Wei Zhang,7 Yu Li,1 Kang Ning,8 Yun Pan,1 Tian Liu,1 Jiping Zhao,1 Jiguang Yu,9 Yunbo Sun,10 Feng Gao,11 Rumin Zhang,12 Chunsheng Fu,13 Yu Sun,14 Xiuhe Ouyang,15 Fusen Zhang,16 Qing Hu,17 Haifeng Teng,18 Yun Li,19 Chunke Zhang,20 Wei Tan,21 Jinlai Li,22 Lixia Yin,23 Liang Dong,1 Chunting Wang5 1Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China; 2Clinical Nursing Department, School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China; 3Intensive Care Unit, Shandong Provincial Chest Hospital, Jinan, People’s Republic of China; 4College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 5Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China; 6Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, People’s Republic of China; 7Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 8The First Affiliated Hospital of Shandong First Medical University Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China; 9Department of Infectious Diseases, Qishan Hospital, Yantai, People’s Republic of China; 10Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China; 11Department of Infectious Disease, Linyi People’s Hospital, Linyi, People’s Republic of China; 12Department of Critical Care Medicine, Zibo Central Hospital, Zibo, People’s Republic of China; 13Liaocheng Contagion Hospital, Liaocheng, People’s Republic of China; 14Jining Hospital of Infectious Diseases, Jining, People’s Republic of China; 15Department of Respiratory and Critical Medicine, Binzhou People’s Hospital, Binzhou, People’s Republic of China; 16Intensive Care Unit, Taian City Central Hospital, Taian, People’s Republic of China; 17Department of Respiratory Medicine, Heze Municipal Hospital, Heze, People’s Republic of China; 18Weihai Municipal Hospital, Weihai, People’s Republic of China; 19Jinan Central Hospital, Jinan, People’s Republic of China; 20Weihai Central Hospital, Weihai, People’s Republic of China; 21Department of Respiratory Medicine, Weifang People’s Hospital, Weifang, People’s Republic of China; 22Intensive Care Unit, Zaozhuang Municipal Hospital, Zaozhuang, People’s Republic of China; 23Department of Respiratory Medicine, Dezhou People’s Hospital, Dezhou, People’s Republic of China*These authors contributed equally to this workCorrespondence: Liang Dong; Chunting Wang Email dl5506@126.com; wcteicu@126.comBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel pathogen, has caused an outbreak of coronavirus disease 2019 (COVID-19) that has spread rapidly around the world. Determining the risk factors for death and the differences in clinical features between severely ill and critically ill patients with SARS-CoV-2 pneumonia has become increasingly important.Aim: This study was intended to provide insight into the difference between severely ill and critically ill patients with SARS-CoV-2 pneumonia.Methods: In this retrospective, multicenter cohort study, we enrolled 62 seriously ill patients with SARS-CoV-2 pneumonia who had been diagnosed by March 12, 2020. Clinical data, laboratory indexes, chest images, and treatment strategies collected from routine medical records were compared between severely ill and critically ill patients. Univariate and multivariate logistic regression analyses were also conducted to identify the risk factors associated with the progression of patients with severe COVID-19.Results: Of the 62 patients with severe or critical illness, including 7 who died, 30 (48%) patients had underlying diseases, of which the most common was cardiovascular disease (hypertension, 34%, and coronary heart disease, 5%). Compared to patients with severe disease, those with critical disease had distinctly higher white blood cell counts, procalcitonin levels, and D-dimer levels, and lower hemoglobin levels and lymphocyte counts. Multivariate regression showed that a lymphocyte count less than 109/L (odds ratio 20.92, 95% CI 1.76– 248.18; p=0.02) at admission increased the risk of developing a critical illness.Conclusion: Based on multivariate regression analysis, a lower lymphocyte count (< 109/L) on admission is the most critical independent factor that is closely associated with an increased risk of progression to critical illness. Age, underlying diseases, especially hypertension and coronary heart disease, elevated D-dimer, decreased hemoglobin, and SOFA score, and APACH score also need to be taken into account for predicting disease progression. Blood cell counts and procalcitonin levels for the later secondary bacterial infection have a certain reference values.Keywords: SARS-CoV-2, COVID-19, clinical features, severely ill patients, critically ill patients