1. An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study
- Author
-
Hao Zhang, Yun-Feng Yang, Xue-Lin Song, Hai-Jian Hu, Yuan-Yuan Yang, Xia Zhu, and Chao Yang
- Subjects
Cerebral hemorrhage ,Radiomics ,Deep learning ,Computed tomography ,Interpretable model ,Medical technology ,R855-855.5 - Abstract
Abstract Objectives To develop and validate a novel interpretable artificial intelligence (AI) model that integrates radiomic features, deep learning features, and imaging features at multiple semantic levels to predict the prognosis of intracerebral hemorrhage (ICH) patients at 6 months post-onset. Materials and methods Retrospectively enrolled 222 patients with ICH for Non-contrast Computed Tomography (NCCT) images and clinical data, who were divided into a training cohort (n = 186, medical center 1) and an external testing cohort (n = 36, medical center 2). Following image preprocessing, the entire hematoma region was segmented by two radiologists as the volume of interest (VOI). Pyradiomics algorithm library was utilized to extract 1762 radiomics features, while a deep convolutional neural network (EfficientnetV2-L) was employed to extract 1000 deep learning features. Additionally, radiologists evaluated imaging features. Based on the three different modalities of features mentioned above, the Random Forest (RF) model was trained, resulting in three models (Radiomics Model, Radiomics-Clinical Model, and DL-Radiomics-Clinical Model). The performance and clinical utility of the models were assessed using the Area Under the Receiver Operating Characteristic Curve (AUC), calibration curve, and Decision Curve Analysis (DCA), with AUC compared using the DeLong test. Furthermore, this study employs three methods, Shapley Additive Explanations (SHAP), Grad-CAM, and Guided Grad-CAM, to conduct a multidimensional interpretability analysis of model decisions. Results The Radiomics-Clinical Model and DL-Radiomics-Clinical Model exhibited relatively good predictive performance, with an AUC of 0.86 [95% Confidence Intervals (CI): 0.71, 0.95; P
- Published
- 2024
- Full Text
- View/download PDF