1. Bacterial cellulose composite hydrogel for pre-concentration and mass spectrometric detection of thiol-containing biomarker.
- Author
-
Lormaneenopparat P, Yukird J, Rodthongkum N, and Hoven VP
- Subjects
- Humans, Cellulose chemistry, Hydrogels, Mass Spectrometry, Bacteria, Glutathione, Gold chemistry, Metal Nanoparticles chemistry
- Abstract
Simple soaking of bacterial cellulose (BC) membrane in carboxymethyl cellulose (CMC) solution yielded BC/CMC hydrogel having re-swellable property. Then, gold nanoparticles (AuNPs) were embedded in the BC/CMC hydrogel via in situ chemical reduction to form BC/CMC/AuNPs composite hydrogel. It was found that the composite hydrogel exhibited physical/chemical characteristics similar to those of BC. The AuNPs with an average diameter of 13 nm distributed uniformly within the BC/CMC matrix as verified by transmission electron microscopy. The novelty of this work is the application of the BC/CMC/AuNPs composite hydrogel for selective adsorption of an important thiol-containing biomarker of Alzheimer's disease, glutathione (GSH), prior to direct laser desorption/ionization mass spectrometric (LDI-MS) detection. GSH adsorbed in the BC/CMC/AuNPs composite hydrogel showed the high ionization signal in LDI-MS providing a linear range of 50-10,000 nM with a limit of detection as low as 54.1 nM, which is a cut-off level for distinguishing between normal individuals and Alzheimer's patients. It should be emphasized that an additional matrix was not necessary as AuNPs can act as self-matrix for LDI-MS analysis. Furthermore, the BC/CMC/AuNPs composite hydrogel can effectively preconcentrate GSH approximately 10 times upon adsorption allowing for ultrasensitive detection of GSH required for disease diagnosis., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF