1. Cooperation of membrane-translocated syntaxin4 and basement membrane for dynamic mammary epithelial morphogenesis
- Author
-
Yohei Hirai and Yuina Hirose
- Subjects
Basement membrane ,Cell ,Mammary gland ,Morphogenesis ,Myoepithelial cell ,Epithelial Cells ,Stimulation ,Cell Biology ,Biology ,Basement Membrane ,Epithelium ,Cell Line ,Cell biology ,Mice ,medicine.anatomical_structure ,Pregnancy ,medicine ,Extracellular ,Animals ,Female ,Epithelial–mesenchymal transition - Abstract
Mammary epithelia undergo dramatic morphogenesis after puberty. During pregnancy, luminal epithelial cells in ductal trees are arranged to form well-polarized cystic structures surrounded by a myoepithelial cell layer, an active supplier of the basement membrane (BM). Here, we identified a novel regulatory mechanism involved in this process by using a reconstituted BM-based three-dimensional culture and aggregates of a model mouse cell line, EpH4, that had either been manipulated for inducible expression of the t-SNARE protein syntaxin4 in intact or signal peptide-connected forms, or that were genetically deficient in syntaxin4. We found that cells extruded syntaxin4 upon stimulation with the lactogenic hormone prolactin, which in turn accelerated the turnover of E-cadherin. In response to extracellular expression of syntaxin4, cell populations that were less affected by the BM actively migrated and integrated into the cell layer facing the BM. Concurrently, the BM-facing cells, which were simultaneously stimulated with syntaxin4 and BM, acquired unique epithelial characteristics to undergo dramatic cellular arrangement for cyst formation. These results highlight the importance of the concerted action of extracellular syntaxin4 extruded in response to the lactogenic hormone and BM components in epithelial morphogenesis.
- Published
- 2021
- Full Text
- View/download PDF