1. Personalized prediction of immunotherapy response in lung cancer patients using advanced radiomics and deep learning
- Author
-
Chien-Yi Liao, Yuh-Min Chen, Yu-Te Wu, Heng-Sheng Chao, Hwa-Yen Chiu, Ting-Wei Wang, Jyun-Ru Chen, Tsu-Hui Shiao, and Chia-Feng Lu
- Subjects
Lung cancer ,Outcome prediction ,Deep learning ,Computed tomography ,Radiomics ,Medical physics. Medical radiology. Nuclear medicine ,R895-920 ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Lung cancer (LC) is a leading cause of cancer-related mortality, and immunotherapy (IO) has shown promise in treating advanced-stage LC. However, identifying patients likely to benefit from IO and monitoring treatment response remains challenging. This study aims to develop a predictive model for progression-free survival (PFS) in LC patients with IO based on clinical features and advanced imaging biomarkers. Materials and methods A retrospective analysis was conducted on a cohort of 206 LC patients receiving IO treatment. Pre-treatment computed tomography images were used to extract advanced imaging biomarkers, including intratumoral and peritumoral-vasculature radiomics. Clinical features, including age, gene status, hematology, and staging, were also collected. Key radiomic and clinical features for predicting IO outcomes were identified using a two-step feature selection process, including univariate Cox regression and chi-squared test, followed by sequential forward selection. The DeepSurv model was constructed to predict PFS based on clinical and radiomic features. Model performance was evaluated using the area under the time-dependent receiver operating characteristic curve (AUC) and concordance index (C-index). Results Combining radiomics of intratumoral heterogeneity and peritumoral-vasculature with clinical features demonstrated a significant enhancement (p
- Published
- 2024
- Full Text
- View/download PDF