1. Tisp40 prevents cardiac ischemia/reperfusion injury through the hexosamine biosynthetic pathway in male mice.
- Author
-
Zhang, Xin, Hu, Can, Ma, Zhen-Guo, Hu, Min, Yuan, Xiao-Pin, Yuan, Yu-Pei, Wang, Sha-Sha, Kong, Chun-Yan, Teng, Teng, and Tang, Qi-Zhu
- Subjects
REPERFUSION injury ,REPERFUSION ,UNFOLDED protein response ,URIDINE diphosphate ,HEART injuries ,ISCHEMIA - Abstract
The hexosamine biosynthetic pathway (HBP) produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to facilitate O-linked GlcNAc (O-GlcNAc) protein modifications, and subsequently enhance cell survival under lethal stresses. Transcript induced in spermiogenesis 40 (Tisp40) is an endoplasmic reticulum membrane-resident transcription factor and plays critical roles in cell homeostasis. Here, we show that Tisp40 expression, cleavage and nuclear accumulation are increased by cardiac ischemia/reperfusion (I/R) injury. Global Tisp40 deficiency exacerbates, whereas cardiomyocyte-restricted Tisp40 overexpression ameliorates I/R-induced oxidative stress, apoptosis and acute cardiac injury, and modulates cardiac remodeling and dysfunction following long-term observations in male mice. In addition, overexpression of nuclear Tisp40 is sufficient to attenuate cardiac I/R injury in vivo and in vitro. Mechanistic studies indicate that Tisp40 directly binds to a conserved unfolded protein response element (UPRE) of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) promoter, and subsequently potentiates HBP flux and O-GlcNAc protein modifications. Moreover, we find that I/R-induced upregulation, cleavage and nuclear accumulation of Tisp40 in the heart are mediated by endoplasmic reticulum stress. Our findings identify Tisp40 as a cardiomyocyte-enriched UPR-associated transcription factor, and targeting Tisp40 may develop effective approaches to mitigate cardiac I/R injury. Cardiac I/R injury is a deleterious issue in the clinic. Here, the authors show that Tisp40 facilitates HBP flux and protein O-GlcNAcylation through binding to the promoter of GFPT1, thereby preventing cardiac I/R injury. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF