1. Exogenous Nitric Oxide Involved in Subcellular Distribution and Chemical Forms of Cu2+ Under Copper Stress in Tomato Seedlings
- Author
-
Yu-xiu DONG, Xiu-feng WANG, and Xiu-min CUI
- Subjects
tomato seedlings ,nitric oxide ,copper stress ,subcellular distribution ,chemical form ,Agriculture (General) ,S1-972 - Abstract
Nitric oxide (NO), a bioactive signaling molecule, serves as an antioxidant and anti-stress agent under abiotic stress. A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside (SNP), a NO donor, on tomato seedlings exposed to 50 μmol L−1 CuCl2. The results show that copper is primarily stored in the soluble cell sap fraction in the roots, especially after treatment with Cu+SNP treatment, which accounted for 66.2% of the total copper content. The copper concentration gradually decreased from the roots to the leaves. In the leaves, exogenous NO induces the storage of excess copper in the cell walls. Copper stress decreases the proportion of copper integrated with pectates and proteins, but exogenous NO remarkably reverses this trend. The alleviating effect of NO is blocked by hemoglobin. Thus, exogenous NO is likely involved in the regulation of the subcellular copper concentrations and its chemical forms under copper stress. Although exogenous NO inhibited the absorption and transport of excess copper to some extent, the copper accumulation in tomato seedlings significantly increased under copper stress. The use of exogenous NO to enhance copper tolerance in some plants is a promising method for copper remediation.
- Published
- 2013
- Full Text
- View/download PDF