Peter D. Hunter, Kohei Arai, Martin Ligi, Krista Alikas, Lino Augusto Sander de Carvalho, Leif G. Olmanson, Nima Pahlevan, Claudio Clemente Faria Barbosa, Simon Bélanger, Caren Binding, François Régis Martin-Lauzer, Sindy Sterckx, Moritz K. Lehmann, Thierry Tormos, Claudia Giardino, Daniela Gurlin, Yongzhen Fan, Evangelos Spyrakos, Stefan G. H. Simis, Nathalie Reynaud, Kerstin Stelzer, Susanne Kratzer, Natascha Oppelt, François Steinmetz, Mark Warren, Yanqun Pan, Andrew N. Tyler, Joji Ishikaza, Brandon I Smith, Tristan Harmel, Quinten Vanhellemont, Mariano Bresciani, Ronghua Ma, Antoine Mangin, Steef Peters, Sundarabalan V. Balasubramanian, NASA Goddard Space Flight Center (GSFC), Science Systems and Applications, Inc. [Lanham] (SSAI), Analytic and Computational Research, Inc. - Earth Sciences (ACRI-ST), GeoSensing and Imaging Consultancy (GeoSI), Tartu Observatory, Saga University [Japon], National Institute for Space Research [Sao José dos Campos] (INPE), Université du Québec à Rimouski (UQAR), Environment and Climate Change Canada, Istituto per il Rilevamento Elettromagnetico dell'Ambiente [Napoli] (IREA-CNR), Consiglio Nazionale delle Ricerche [Napoli] (CNR), Wisconsin Department of Natural Resources (WDNR), Stevens Institute of Technology [Hoboken], Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), University of Stirling, Institute for Space-Earth Environmental Research [Nagoya] (ISEE), Nagoya University, Stockholm University, University of Waikato [Hamilton], Nanjing Institute of Geography Limnology, Chinese Academy of Sciences [Beijing] (CAS), University of Minnesota System, Kiel University, Arctus Inc. (ARCTUS), Water Insight, Risques, Ecosystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix Marseille Université (AMU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Universidade Federal do Rio de Janeiro (UFRJ), Plymouth Marine Laboratory (PML), HYGEOS (SARL), Brockmann Consult, Vlaamse Instelling voor Technologisch Onderzoek [Mol] (VITO), Pôle Écla - écosystèmes lacustres (ECLA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Office français de la biodiversité (OFB), Royal Belgian Institute of Natural Sciences (RBINS), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2014/23903-9, European Project: 730066,H2020-EU.2.1.6.3. - Enabling exploitation of space data, H2020-EU.2.1.6.1.2. - Boost innovation between space and non-space sectors,EOMORES(2016), European Project: 776480,H2020-EU.3.5.5. - Developing comprehensive and sustained global environmental observation and information systems ,MONOCLE(2018), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and Plymouth Marine Laboratory
International audience; Atmospheric correction over inland and coastal waters is one of the major remaining challenges in aquatic remote sensing, often hindering the quantitative retrieval of biogeochemical variables and analysis of their spatial and temporal variability within aquatic environments. The Atmospheric Correction Intercomparison Exercise (ACIX-Aqua), a joint NASA – ESA activity, was initiated to enable a thorough evaluation of eight state-of-the-art atmospheric correction (AC) processors available for Landsat-8 and Sentinel-2 data processing. Over 1000 radiometric matchups from both freshwaters (rivers, lakes, reservoirs) and coastal waters were utilized to examine the quality of derived aquatic reflectances (̂ρ w ). This dataset originated from two sources: Data gathered from the international scientific community (henceforth called Community Validation Database, CVD), which captured predominantly inland water observations, and the Ocean Color component of AERONET measurements (AERONET-OC), representing primarily coastal ocean environments. This volume of data permitted the evaluation of the AC processors individually (using all the matchups) and comparatively (across seven different Optical Water Types, OWTs) using common matchups. We found that the performance of the AC processors differed for CVD and AERONET-OC matchups, likely reflecting inherent variability in aquatic and atmospheric properties between the two datasets. For the former, the median errors in ̂ρ w (560) and ̂ρ w (664) were found to range from 20 to 30% for best-performing processors. Using the AERONET-OC matchups, our performance assessments showed that median errors within the 15–30% range in these spectral bands may be achieved. The largest uncertainties were associated with the blue bands (25 to 60%) for best-performing processors considering both CVD and AERONET-OC assessments. We further assessed uncertainty propagation to the downstream products such as near-surface concentration of chlorophyll-a (Chla) and Total Suspended Solids (TSS). Using satellite matchups from the CVD along with in situ Chla and TSS, we found that 20–30% uncertainties in ̂ρ w (490 ≤ λ ≤ 743 nm) yielded 25–70% uncertainties in derived Chla and TSS products for top-performing AC processors. We summarize our results using performance matrices guiding the satellite user community through the OWT-specific relative performance of AC processors. Our analysis stresses the need for better representation of aerosols, particularly absorbing ones, and improvements in corrections for sky- (or sun-) glint and adjacency effects, in order to achieve higher quality downstream products in freshwater and coastal ecosystems.