Jean C Shih, Yohan Santin, Damien Maggiorani, Olivier Lairez, Marlène Marcellin, Florence Tortosa, Pierre Sicard, Odile Burlet-Schiltz, Yannis Sainte-Marie, Jeanne Mialet-Perez, Loubina Fazal, Lise Teyssedre, Cécile Vindis, Angelo Parini, Jacques Rouquette, Yasemin Yücel Yücel, Frank Lezoualc'h, Mialet-Perez, Jeanne, Infrastructure Française de Protéomique - - ProFI2010 - ANR-10-INBS-0008 - INBS - VALID, EPAC1 : Une nouvelle cible thérapeutique dans les maladies rénales chroniques - - EPACK2017 - ANR-17-CE14-0014 - AAPG2017 - VALID, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Departement of Biochemistry [Istanbul, Turkey] (School of Pharmacy), Altinbas University [Istanbul, Turkey], Institut des Technologies Avancées en sciences du Vivant (ITAV), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut de pharmacologie et de biologie structurale (IPBS), University of Southern California (USC), This work was supported by grants from Agence Nationale pour la Recherche referenced as 'ANRJCJC CARDIOMAO', 'ProFIANR-10-INBS-08', 'ANR-17-CE14-0014-01', grants from European funds (FEDER), Fondazione Cariplo (2014-0672), Fondation pour la Recherche Médicale (équipe FRM2016, DEQ20160334892) and Région Occitanie., ANR-10-INBS-0008,ProFI,Infrastructure Française de Protéomique(2010), ANR-17-CE14-0014,EPACK,EPAC1 : Une nouvelle cible thérapeutique dans les maladies rénales chroniques(2017), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, University of Southern California [Los Angeles, CA, USA], Physiologie & médecine expérimentale du Cœur et des Muscles [U 1046] (PhyMedExp), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), School of Pharmacy, Altinbas University, Istanbul, Turkey., University of Southern California, Los Angeles, CA, USA, Institut de médecine moléculaire de Rangueil (I2MR), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IFR150-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biosciences et de Biotechnologies de Grenoble (ex-IRTSV) (BIG), Institut National de la Santé et de la Recherche Médicale (INSERM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Grenoble Alpes (UGA), Yücel, Yasemin, Analytic and Computational Research, Inc. - Earth Sciences (ACRI-ST), and Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
MIALET-PEREZ, Jeanne/0000-0002-1765-0283; O, Lairez/0000-0001-8141-6582; Sicard, Pierre/0000-0001-5837-3916; Vindis, Cecile/0000-0003-2421-1155; Schiltz, Odile/0000-0002-3606-2356; Santin, Yohan/0000-0002-9229-1161 WOS:000534930000012 PubMed: 31819159 Chronic remodeling postmyocardial infarction consists in various maladaptive changes including interstitial fibrosis, cardiomyocyte death and mitochondrial dysfunction that lead to heart failure (HF). Reactive aldehydes such as 4-hydroxynonenal (4-HNE) are critical mediators of mitochondrial dysfunction but the sources of mitochondrial 4-HNE in cardiac diseases together with its mechanisms of action remain poorly understood. Here, we evaluated whether the mitochondrial enzyme monoamine oxidase-A (MAO-A), which generates H2O2 as a by-product of catecholamine metabolism, is a source of deleterious 4-HNE in HF. We found that MAO-A activation increased mitochondrial ROS and promoted local 4-HNE production inside the mitochondria through cardiolipin peroxidation in primary cardiomyocytes. Deleterious effects of MAO-A/4-HNE on cardiac dysfunction were prevented by activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2), the main enzyme for 4-HNE metabolism. Mechanistically, MAO-A-derived 4-HNE bound to newly identified targets VDAC and MCU to promote ER-mitochondria contact sites and MCU higher-order complex formation. The resulting mitochondrial Ca2+ accumulation participated in mitochondrial respiratory dysfunction and loss of membrane potential, as shown with the protective effects of the MCU inhibitor, RU360. Most interestingly, these findings were recapitulated in a chronic model of ischemic remodeling where pharmacological or genetic inhibition of MAO-A protected the mice from 4-HNE accumulation, MCU oligomer formation and Ca2+ overload, thus mitigating ventricular dysfunction. To our knowledge, these are the first evidences linking MAO-A activation to mitoCa(2+) mishandling through local 4-HNE production, contributing to energetic failure and postischemic remodeling.