1. Integrated MADM of low-carbon structural design for high-end equipment based on attribute reduction considering incomplete interval uncertainties
- Author
-
Zhaoxi Hong, Kaiyue Cui, Yixiong Feng, Jinyuan Song, Bingtao Hu, and Jianrong Tan
- Subjects
Low-carbon structural design ,High-end equipment ,Attribute reduction ,Incomplete interval uncertainties ,IRN ,DNAP ,Medicine ,Science - Abstract
Abstract With the increasingly severe energy supply and environmental pressures, high-end equipment is gradually adopted to reduce the carbon emissions of manufacturing industry which makes its low-carbon structural design a critical research hotspot. The best structural scheme can be got by multi-attribute decision-making (MADM) with design requirements. However, the decision-making attributes in the structural design of high-end equipment are too many at first and low-carbon attributes are seldom fully considered. Moreover, there are a large amount of related data with linguistic vagueness, interval uncertainty, and information incompleteness, which fail to be handled simultaneously. There, this paper proposes an integrated MADM method of low-carbon structural design for high-end equipment based on attribute reduction considering incomplete interval uncertainties. First, distribution reduction of low-carbon structural design is carried out to obtain the minimum attribute set and encompass low-carbon attributes comprehensively. Second, a collaborative filtering algorithm is utilized to complete the missing data in the subsequent design process. Third, interval rough numbers (IRNs) are integrated into DEMATEL-ANP (DANP) and multi-attribute border approximation area comparison (MABAC) to quickly rank the alternative schemes for high-end equipment and determine which is the best. The rationality and robustness of the proposed method are verified through the case study and comparative analysis of a hydraulic forming machine.
- Published
- 2024
- Full Text
- View/download PDF