1. Sensitivities to New Resonance Couplings to $W$-Bosons at the LHC
- Author
-
Mao, Ying-nan, Wang, Kechen, and Xiong, Yiheng
- Subjects
High Energy Physics - Phenomenology - Abstract
We propose a search strategy at the HL-LHC for a new neutral particle $X$ that couples to $W$-bosons, using the process $p p \rightarrow W^{\pm} X (\rightarrow W^{+} W^{-})$ with a tri-$W$-boson final state. Focusing on events with two same-sign leptonic $W$-boson decays into muons and a hadronically decaying $W$-boson, our method leverages the enhanced signal-to-background discrimination achieved through a machine-learning-based multivariate analysis. Using the heavy photophobic axion-like particle (ALP) as a benchmark, we evaluate the discovery sensitivities on both production cross section times branching ratio $\sigma(p p \rightarrow W^{\pm} X) \times \textrm{Br}(X \rightarrow W^{+} W^{-})$ and the coupling $g_{aWW}$ for the particle mass over a wide range of 170-3000 GeV at the HL-LHC with center-of-mass energy $\sqrt{s} = 14$ TeV and integrated luminosity $\mathcal{L} = 3$ $\textrm{ab}^{-1}$. Our results show significant improvements in discovery sensitivity, particularly for masses above 300 GeV, compared to existing limits derived from CMS analyses of Standard Model (SM) tri-$W$-boson production at $\sqrt{s} = 13$ TeV. This study demonstrates the potential of advanced selection techniques in probing the coupling of new particles to $W$-bosons and highlights the HL-LHC's capability to explore the physics beyond the SM., Comment: 24 pages, 3 tables, 13 figures, more MVA details added
- Published
- 2024