1. Effect of annealing temperature on the optoelectrical synapse behaviors of A-ZnO microtube
- Author
-
Yongman Pan, Qiang Wang, Anqing He, Yinzhou Yan, Xingzhong Cao, Peng Liu, and Yijian Jiang
- Subjects
Annealing ,Optoelectrical synapse behaviors ,Negative thermal quenching ,“Learning-experience” behavior ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Abstract Optoelectronic synapses with fast response, low power consumption, and memory function hold great potential in the future of artificial intelligence technologies. Herein, a strategy of annealing in oxygen ambient at different temperatures is presented to improve the optoelectronic synaptic behaviors of acceptor-rich ZnO (A-ZnO) microtubes. The basic synaptic functions of as-grown and annealed A-ZnO microtubes including excitatory postsynaptic current (EPSC), short-term memory (STM) to long-term memory (LTM) conversion, and paired-pulse facilitation (PPF), were successfully emulated. The results show that the annealing temperature of 600 °C yields high figures of merit compared to other annealed A-ZnO microtubes. The 4-fold and 20-fold enhancement dependent on the light pulse duration time and energy density have been achieved in the 600 °C annealed A-ZnO microtube, respectively. Furthermore, the device exhibited a PPF index of up to 238% and achieved four cycles of “learning-forgetting” process, proving its capability for optical information storage. The free exciton (FX) and donor–acceptor pair (DAP) concentrations significantly influenced the persistent photoconductivity (PPC) behavior of A-ZnO microtubes. Therefore, the LTM response can be controlled by the adjustment of numbers, powers, and interval time of the optical stimulation. This work outlines a strategy to improve the EPSC response through defect control, representing a step towards applications in the field of optoelectronic synaptic device.
- Published
- 2024
- Full Text
- View/download PDF