1. Processing tactics for low-cost production of pure nuciferine from lotus leaf
- Author
-
Yeqing Ruan, Jiahuan Xu, Jianbo Chu, Jing Shi, and Qiyuan Shi
- Subjects
Nuciferine ,Lotus leaf ,Low-cost production ,Ultrasonic-assisted extraction-solid phase extraction ,Liquid-liquid extraction ,Crystallization ,Chemistry ,QD1-999 ,Acoustics. Sound ,QC221-246 - Abstract
Nuciferine is an important drug candidate for the treatment of many diseases. However, there is no general method for its low - cost production. In this work, a feasible method for the production of nuciferine from lotus leaf, using ultrasonic-assisted extraction-solid phase extraction (UAE-SPE) as extraction and cleanup procedure, was developed. Petroleum ether and silica gel have been successfully used as extraction solvent and adsorbent to integrate UAE with SPE, respectively. Except for filtration, no treatment (e.g. concentration and redissolution, etc) was needed on UAE extract before SPE and the effluents obtained in the loading process of SPE could be used as UAE extraction solvent without purification. No obvious decline in the extraction efficiency of UAE and adsorption capacity of SPE was observed at least for 5 runs, which provides a feasible way for the continuous production of nuciferine in industry, i.e. Cyclic UAE-SPE. Moreover, SPE column could be conveniently regenerated and reused without significant decline in its adsorption capacity at least for 5 cycles, which can be used to reduce the cost of the whole system further. In comparison with other cleanup procedures, Cyclic UAE-SPE showed apparent advantages in energy conservation and emission reduction. LLE and crystallization were applied to separate nuciferine from other impurities further. Under optimum conditions, the total recovery rate of nuciferine with a purity over 90.0% from lotus leaf reached 50.1%. All in all, the developed method has advantages in convenient operation, low cost, and high efficiency, thus, is fitting for the production of high purity nuciferine.
- Published
- 2022
- Full Text
- View/download PDF