1. Enhanced antifouling and antibacterial performances of novel UV-curable polysiloxane/microcapsules/Ag composite coatings for marine applications
- Author
-
Ze Liu, Nan Zheng, Jie Liu, Bo Jia, Xiaojun Wang, Pan Yao, Yayu Zhang, Fu Xia, and Xinyu Guo
- Subjects
microcapsules ,low-surface energy ,antifouling coatings ,bionics ,antibacterial performance ,Science - Abstract
Marine biological fouling is a widespread phenomenon encountered by various oceanic ships and naval vessels, resulting in enormous economic losses. Herein, novel 4,5-dichloro-2-octyl-isothiazolone@sodium alginate/chitosan microcapsules (DCOIT@ALG/CS) were prepared through composite gel method using DCOIT as core materials, ALG and CS as shells, and CaCl2 as the cross-linking agent. The formed microcapsules (MCs) with Ag nanoparticles (AgNPs) were then filled in UV-curable polysiloxane (UV-PDMS), followed by UV irradiation to yield UV-PDMS/microcapsules/AgNPs (UV-PDMS/MCs/Ag) composite coatings. The constructed micro–nano dual-scale surface using the MCs and AgNPs improved the antifouling and antibacterial properties of UV-PDMS/MCs/Ag coatings. The as-obtained UV-PDMS/MCs/Ag coatings exhibited a static contact angle of about 160°, shear strength of 2.24 MPa, tensile strength of 3.32 MPa and elongation at break of 212%. The synergistic bacteriostatic effects of DCOIT and AgNPs in UV-PDMS/MCs/Ag coatings resulted in a bactericidal rate of 200 μg ml−1 towards Escherichia coli and Staphylococcus aureus with saturation at 100% within 10 min. In sum, the proposed composite coatings look promising for future marine transportation, pipeline networks and undersea facilities.
- Published
- 2024
- Full Text
- View/download PDF