In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that two mediators, Rad22 (the S. pombe Rad52 homolog) and the Swi5-Sfr1 complex, participate in a common pathway of Rhp51 (the S. pombe Rad51 homolog)–mediated homologous recombination (HR) and HR repair. Here, we have demonstrated an in vitro reconstitution of the central step of DNA strand exchange during HR. Our system consists entirely of homogeneously purified proteins, including Rhp51, the two mediators, and replication protein A (RPA), which reflects genetic requirements in vivo. Using this system, we present the first robust biochemical evidence that concerted action of the two mediators directs the loading of Rhp51 onto single-stranded DNA (ssDNA) precoated with RPA. Dissection of the reaction reveals that Rad22 overcomes the inhibitory effect of RPA on Rhp51-Swi5-Sfr1–mediated strand exchange. In addition, Rad22 negates the requirement for a strict order of protein addition to the in vitro system. However, despite the presence of Rad22, Swi5-Sfr1 is still essential for strand exchange. Importantly, Rhp51, but neither Rad22 nor the Swi5-Sfr1 mediator, is the factor that displaces RPA from ssDNA. Swi5-Sfr1 stabilizes Rhp51-ssDNA filaments in an ATP-dependent manner, and this stabilization is correlated with activation of Rhp51 for the strand exchange reaction. Rad22 alone cannot activate the Rhp51 presynaptic filament. AMP-PNP, a nonhydrolyzable ATP analog, induces a similar stabilization of Rhp51, but this stabilization is independent of Swi5-Sfr1. However, hydrolysis of ATP is required for processive strand transfer, which results in the formation of a long heteroduplex. Our in vitro reconstitution system has revealed that the two mediators have indispensable, but distinct, roles for mediating Rhp51 loading onto RPA-precoated ssDNA, Author Summary Homologous recombination promotes genetic diversity in the next generation and serves as a driving force for evolution. It also provides efficient machinery for repairing DNA damage such as double-strand breaks. Homologous recombination involves DNA exchange between homologous chromosomes, which is mediated by evolutionarily conserved proteins called recombinases. It is thought that a recombinase binds to single-stranded DNA (ssDNA) to form a nucleoprotein filament called the presynaptic filament, and that this higher order structure engages in a search for homologous DNA sequences. Once a homologous duplex is found, the presynaptic filament initiates strand exchange. However, when ssDNA regions are created, they are immediately covered by replication protein A (RPA), thereby inhibiting recombinase filament formation even under conditions in which homologous recombination is appropriate. Previous studies suggested that mediator proteins help load recombinases onto ssDNA, and further studies showed that at least two mediators function together in a single recombination pathway. How these mediators coordinate recombinase loading has been unclear. We have addressed this question by reconstituting an in vitro strand exchange reaction with purified proteins including a fission yeast recombinase, Rhp51, two mediators, Rad22 and the Swi5-Sfr1 complex, and RPA. Our results indicate that Rad22 orchestrates the loading of Rhp51 onto RPA-coated ssDNA by acting as a scaffold for nucleating the recombinase filament, whereas the other mediator, Swi5-Sfr1, stabilizes and activates the filament., A test tube reconstitution of the strand exchange reaction provides further evidence that the two mediators cooperatively promote the nucleation of active recombinase-ssDNA filaments, creating a higher order structure for recombination.