1. An evolutionary epigenetic clock in plants
- Author
-
Yao, N, Zhang, Z, Yu, L, Hazarika, R, Yu, C, Jang, H, Smith, LM, Ton, J, Liu, L, Stachowicz, JJ, Reusch, TBH, Schmitz, RJ, and Johannes, F
- Subjects
Climate Change Impacts and Adaptation ,Biological Sciences ,Genetics ,Plant Biology ,Environmental Sciences ,General Science & Technology - Abstract
Molecular clocks are the basis for dating the divergence between lineages over macroevolutionary timescales (~105 to 108 years). However, classical DNA-based clocks tick too slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation changes at a subset of cytosines in plant genomes display a clocklike behavior. This "epimutation clock" is orders of magnitude faster than DNA-based clocks and enables phylogenetic explorations on a scale of years to centuries. We show experimentally that epimutation clocks recapitulate known topologies and branching times of intraspecies phylogenetic trees in the self-fertilizing plant Arabidopsis thaliana and the clonal seagrass Zostera marina, which represent two major modes of plant reproduction. This discovery will open new possibilities for high-resolution temporal studies of plant biodiversity.
- Published
- 2023