1. DHA Sensor GPR120 in Host Defense Exhibits the Dual Characteristics of Regulating Dendritic Cell Function and Skewing the Balance of Th17/Tregs
- Author
-
Yanqing Meng, Xiao Wang, Guangpeng Li, Yang Yang, Caiquan Zhao, Jinxiu Zhou, Ming Zhou, and Niu Shi
- Subjects
Boron Compounds ,Cell signaling ,GPR120 ,dendritic cell ,Cell Survival ,T cell ,Endogeny ,Real-Time Polymerase Chain Reaction ,Applied Microbiology and Biotechnology ,T-Lymphocytes, Regulatory ,Gas Chromatography-Mass Spectrometry ,Receptors, G-Protein-Coupled ,03 medical and health sciences ,Mice ,Immune system ,Phagocytosis ,In vivo ,medicine ,Animals ,rabies virus ,Receptor ,Molecular Biology ,Th17/Tregs ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,Cell Proliferation ,Encephalitis Virus, Japanese ,0303 health sciences ,Chemistry ,Sequence Analysis, RNA ,Cell Biology ,Dendritic cell ,Dendritic Cells ,Flow Cytometry ,Cell biology ,DHA ,Mice, Inbred C57BL ,Japanese encephalitis virus ,medicine.anatomical_structure ,Myeloid Differentiation Factor 88 ,Th17 Cells ,Female ,Developmental Biology ,Research Paper - Abstract
In addition to functioning as an antioxidant, anti-inflammatory and age-defying cellular component, DHA impacts the immune system by facilitating the pathogen invasion. The mechanism through which DHA regulates immune suppression remains obscure. In our study, we postulated that DHA might interact with GPR120 to shape the dendritic cell (DC) differentiation and subsequently drive T cell proliferation during the virus infection. In vitro, the proportion of costimulatory molecules and HLA-DR on DC that generated from exogenous and endogenous (fad3b expression) DHA supplemented mice were significantly lower than wild-type mice. Given the importance of FAs, DHA is not only a critical cellular constituent but also a cell signaling molecule and FA deficiency reduces DC generation; we used GPR120-/- mice to determine whether DHA receptor deficiency disorders DC maturation processing. Novelty, the expression of GPR120 on DC from wild-type (WT) mice was inversely related to DC activation and DC from the GPR120-/- mice maintained a spontaneous maturation status. In vivo, both the excessive activation of GPR120 by DHA and the deletion of GPR120 effectively skewed the balance of Th17/Tregs and reduced the production of VNA and protection of vaccination. Overall, our results revealed a mechanism that the GPR120 self-regulation plays a crucial role in sensing DHA variation, which provides a new prospect for therapeutic manipulation in autoimmune diseases and the design of a vaccine adjuvant.
- Published
- 2020