1. Comparative chloroplast genome analysis of Ardisia (Myrsinoideae, Primulaceae) in China and implications for phylogenetic relationships and adaptive evolution
- Author
-
Jin Zhang, Yangyang Ning, Jingjian Li, Yongbiao Deng, LiSheng Wang, Shizhong Mao, and Bo Zhao
- Subjects
Ardisia ,Chloroplast genome ,Phylogeny ,Adaptive evolution ,Botany ,QK1-989 - Abstract
Abstract Background Numerous species of Ardisia are widely used for their medicinal and ornamental values in China. However, accurately identifying Ardisia species at the molecular level remains a challenge due to the morphological similarities among different species, the complexity of interspecific variation, and the limited availability of genetic markers. In this study, we reported 20 chloroplast genomes of Ardisia species from China and combined them with 8 previously published chloroplast genomes to conduct a comprehensive analysis for phylogenetic relationships and adaptive evolution. Results For the 28 Ardisia species analyzed in this study, the size of the chloroplast genomes ranged from 155,088 bp to 156,999 bp, and all exhibited a typical tetrad structure with conserved gene content and number. Each genome contained 85–88 protein-coding genes, 36–37 tRNA genes, and 8 rRNA genes. Comparative analysis showed that the genomic structures and gene order were relatively conserved with slight variations in the inverted repeat regions (IRs). Simple sequence repeats (SSRs) were predominantly single nucleotide repeats, while repeat sequences were mainly composed of palindromic and forward repeats. Twelve highly variable regions were identified as potential DNA barcodes for species identification and phylogenetic analysis of Ardisia. The phylogenetic tree supported the division of the subgenus Bladhia s.l. into two subgenera: Bladhia s.str. and Odontophylla (Yang) Huang. Further investigation revealed that two protein-coding genes (rbcL and rpoC2) were under positive selection and might be associated with the adaptation of Ardisia species to shaded environments. Conclusion Our study analyzed the chloroplast genomes of 20 Ardisia species from China to explore their phylogenetic relationships and adaptive evolution. By combining these results with data from eight previously published chloroplast genomes, the essential characteristics of Ardisia chloroplast genomes were clarified. The research establishes a theoretical basis for the classification, identification, and comprehension of the adaptive evolution of Ardisia species.
- Published
- 2024
- Full Text
- View/download PDF