1. Predictions of masses for light hybrid baryons
- Author
-
Wang, Qi-Nan, Lian, Ding-Kun, Chen, Wei, Yang, Hui-Min, Chen, Hua-Xing, Ho, J., and Steele, T. G.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,High Energy Physics - Lattice - Abstract
Within the method of parity-projected QCD sum rules, we study the mass spectra of light hybrid baryons with $I(J^{P})=1/2(1/2^{\pm}), 3/2(1/2^{\pm}), 1/2(3/2^{\pm}), 3/2(3/2^{\pm})$ by constructing the local $qqqg$ interpolating currents. We calculate the correlation functions up to dimension eight condensates at the leading order of $\alpha_{s}$. The stable QCD Lapalce sum rules can be established for the positive-parity $N_{1/2^+}, \Delta_{3/2^+}, \Delta_{1/2^+}$ and negative-parity $N_{1/2^-}, N_{3/2^-}, \Delta_{1/2^-}$ channels to extract their mass spectra. The lowest-lying hybrid baryons are predicted to be the negative-parity $N_{1/2^-}$ state around 2.28 GeV and $\Delta_{1/2^-}$ state around 2.64 GeV. These hybrid baryons mainly decay into conventional baryon plus meson final states. We propose to search for the light hybrid baryons through the $\chi_{cJ}/\Upsilon$ decays via the three-gluon emission mechanism in BESIII and BelleII experiments. Our studies of the light hybrid baryons will be useful for understanding the excited baryon spectrum and the behavior of gluonic degrees of freedom in QCD., Comment: 6 pages, 5 figures
- Published
- 2024