1. Extracellular heat shock protein 90α mediates HDM-induced bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling
- Author
-
Hang-ming Dong, Yan-qing Le, Yan-hong Wang, Hai-jin Zhao, Chao-wen Huang, Ya-hui Hu, Li-shan Luo, Xuan Wan, Yi-lan Wei, Zi-qiang Chu, Wei Li, and Shao-xi Cai
- Subjects
Bronchial epithelial ,Barrier dysfunction ,Extracellular heat shock protein90α ,RhoA/MLC signaling ,House dust mite ,Diseases of the respiratory system ,RC705-779 - Abstract
Abstract Background The disruption and hyperpermeability of bronchial epithelial barrier are closely related to the pathogenesis of asthma. House dust mite (HDM), one of the most important allergens, could increase the airway epithelial permeability. Heat shock protein (Hsp) 90α is also implicated in the lung endothelial barrier dysfunction by disrupting RhoA signaling. However, the effect of extracellular Hsp90α (eHsp90α) on the bronchial epithelial barrier disruption induced by HDM has never been reported. Methods To investigate the involvement of eHsp90α in the bronchial epithelial barrier disruption induced by HDM, normal human bronchial epithelial cell line 16HBE14o- (16HBE) cells were treated by HDM, human recombinant (hr) Hsp90α and hrHsp90β respectively and pretreated by1G6-D7, a specific anti-secreted Hsp90α monoclonal antibody (mAb). Hsp90α-silencing cells were also constructed. To further evaluate the role of RhoA signaling in this process, cells were pretreated by inhibitors of Rho kinase, GSK429286A and Y27632 2HCl. Transepithelial electrical resistance (TEER) and FITC-dextran flux (FITC-DX) were examined as the epithelial barrier function. Expression and localization of adherens junctional proteins E-cadherin and β-catenin were evaluated by western blotting and immunofluorescence respectively. The level of eHsp90α was investigated by concentration and purification of condition media. RhoA activity was determined by using a Rho G-LISA® RhoA activation assay kitTM biochem kit, and the phosphorylation of myosin light chain (MLC), the downstream signal molecule of RhoA, was assessed by western blotting. Results The epithelial barrier disruption and the loss of adherens junctional proteins E-cadherin and β-catenin in cytomembrane were observed in HDM-treated 16HBE cells, paralleled with the increase of eHsp90α secretion. All of which were rescued in Hsp90α-silencing cells or by pretreating 16HBE cells with 1G6-D7. Also, 1G6-D7 suppressed RhoA activity and MLC phosphorylation induced by HDM. Furthermore, inhibitors of Rho kinase prevented and restored the airway barrier disruption. Consistently, it was hrHsp90α instead of hrHsp90β that promoted barrier dysfunction and activated RhoA/MLC signaling in 16HBE cells. Conclusions The eHsp90α mediates HDM-induced human bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling, suggesting that eHsp90α is a potential therapeutic target for treatment of asthma.
- Published
- 2017
- Full Text
- View/download PDF