1. Characteristics Analysis of the Multi-Channel Ground-Based Microwave Radiometer Observations during Various Weather Conditions
- Author
-
Meng Liu, Yan-An Liu, and Jiong Shu
- Subjects
ground-based microwave radiometer ,accuracy evaluation ,brightness temperature ,cloud liquid water ,temperature profile ,temperature inversion ,Meteorology. Climatology ,QC851-999 - Abstract
Ground-based multi-channel microwave radiometers (MWRs) can continuously detect atmospheric profiles in the tropospheric atmosphere. This makes MWR an ideal tool to supplement radiosonde and satellite observations in monitoring the thermodynamic evolution of the atmosphere and improving numerical weather prediction (NWP) through data assimilation. The analysis of product characteristics of MWR is the basis for applying its data to real-time monitoring and assimilation. In this paper, observations from the latest generation of ground-based multi-channel MWR RPG-HATPRO-G5 installed in Shanghai, China, are compared with the radiosonde observations (RAOB) observed in the same location. The detection performance, characteristics of various channels, and the accuracy of the retrieval profile products of the MWR RPG are comprehensively evaluated during various weather conditions. The results show that the brightness temperatures (BTs) observed by the ground-based MWR RPG during precipitation conditions were high, which affected its detection performance. The bias and the standard deviation (SD) between the BT observed by MWR RPG and the simulated BT during clear and cloudy sky conditions were slight and large, respectively, and the coefficient of determination (R2) was high and low, respectively. However, when the cloud liquid water (CLW) information was added when simulating BT, the bias and the SD of the observed BT and the simulated BT during cloudy days were reduced and the R2 value improved, which indicated that CLW information should be taken into account when simulating BT during cloudy conditions. The temperature profiles of the MWR retrieval had the same accuracy of RMSEs (root-mean-square error) with heights during both clear-sky and cloudy sky conditions, where the RMSEs were below 2 K when the heights were below 4 km. In addition, the MWR RPG has the potential ability to retrieve the temperature inversion in the boundary layer, which has important application value for fog and air pollution monitoring.
- Published
- 2022
- Full Text
- View/download PDF