1. Theoretical Study on the Structural and Thermodynamic Properties of U-He compounds under High Pressure
- Author
-
Cao, Ye, Song, Hongxing, Yan, Xiaozhen, Wang, Hao, Wang, Yufeng, Wu, Fengchao, Zhang, Leilei, Wu, Qiang, and Geng, Hua Y.
- Subjects
Condensed Matter - Materials Science ,Physics - Applied Physics ,Physics - Computational Physics - Abstract
Uranium is considered as a very important nuclear energy material because of the huge amount of energy released. As the main products of spontaneous decay of uranium, helium is difficult to react with uranium for its chemical inertness. Therefore, bubbles will be formed inside uranium, which could greatly reduce the performance of uranium or cause the safety problems. Additionally, nuclear materials are usually operated in an environment of high-temperature and high-pressure, so it is necessary to figure out the exact state of helium inside uranium at extreme conditions. Here, we explored the structural stability of U-He system under high-pressure and high-temperature by using density functional theory calculations. Two metastable phases are found between 50 and 400 GPa: U4He with space group Fmmm and U6He with space group P-1. Both are metallic and adopt layered structures. Electron localization function calculation combined with charge density difference analysis indicate that there are covalent bonds between U and U atoms in both Fmmm-U4He and P-1-U6He. Compared with the elastic modulus of ${\alpha}$-U, the addition of helium has certain influence on the mechanical properties of uranium. Besides, first-principles molecular dynamics simulations were carried out to study the dynamical behavior of Fmmm-U4He and P-1-U6He at high-temperature. It is found that Fmmm-U4He and P-1-U6He undergo one-dimensional superionic phase transitions at 150 GPa. Our study revealed exotic structure of U-He compounds beyond the form of bubble under high-pressure and high-temperature, that might be relevant to the performance and safety issue of nuclear materials at extreme conditions., Comment: 8 pages, 4 figures, with Supplementary Information
- Published
- 2024
- Full Text
- View/download PDF