1. Large-Scale Synoptic Systems and Fog During the C-FOG Field Experiment
- Author
-
Dorman, Clive E, Hoch, Sebastian W, Gultepe, Ismail, Wang, Qing, Yamaguchi, Ryan T, Fernando, HJS, and Krishnamurthy, Raghavendra
- Subjects
Atlantic Canada ,Climatology ,Coastal fog ,Marine fog ,Synoptic meteorology ,Atmospheric Sciences ,Meteorology & Atmospheric Sciences - Abstract
AbstractThe goal of this work is to summarize synoptic meteorological conditions during the Coastal Fog (C-FOG) field project that took place onshore and offshore of the Avalon Peninsula, Newfoundland, from 25 August until 8 October 2018. Visibility was measured at three locations at the Ferryland supersite that are about 1 km from each other, and at two additional sites 66 and 76 km to the north. Supporting meteorological measurements included surface winds, air temperature, humidity, pressure, radiation, cloud-base height, and atmospheric thermodynamic profiles from radiosonde soundings. Statistics are presented for surface measurements during fog events including turbulence kinetic energy, net longwave radiation, visibility, and precipitation. Eleven fog events are observed at Ferryland. Each significant fog event is related to a large-scale cyclonic system. The longest fog event is due to interaction of a northern deep low and a tropical cyclone. Fog occurrence is also examined across Atlantic Canada by including Sable Island, Yarmouth, Halifax, and Sydney. It is concluded that at Ferryland, all significant fog events occur under a cyclonic system while at Sable Island all significant fog events occur under both cyclonic and anticyclonic systems. The fog-formation mechanism involves cloud lowering and stratus broadening or only stratus broadening for the cyclonic systems while for the anticyclonic systems it is stratus broadening or radiation. Although widely cited as the main cause of fog in Atlantic Canada, advection fog is not found to be the primary or sole fog type in the events examined.
- Published
- 2021