1,467 results on '"Y, Miyoshi"'
Search Results
2. Planetary Wave Signature in Low Latitude Sporadic E Layer Obtained From Multi‐Mission Radio Occultation Observations
- Author
-
S. Sobhkhiz‐Miandehi, Y. Yamazaki, C. Arras, Y. Miyoshi, H. Shinagawa, and A. P. Jadhav
- Subjects
Astronomy ,QB1-991 ,Geology ,QE1-996.5 - Abstract
Abstract The Sporadic E layer or Es is an ionospheric phenomenon characterized by enhancements in electron density within 90–120 km above the Earth's surface. Based on the wind shear theory, the formation of Es layers is associated with vertical shears in the horizontal wind, in the presence of the Earth's magnetic field. This study explores the role of planetary waves on inducing these vertical shears and subsequently shaping Es layers. Our investigations benefit from a large amount of data facilitated by the FORMOSAT‐7/COSMIC2 and Spire missions, which offer extensive global coverage. A wave analysis is applied to the Es intensity as represented by the S4 index derived from radio occultation measurements, in search of potential planetary wave signatures. Additionally, measurements from Aura/MLS are used to analyze corresponding spectra for the geopotential height, enabling a comparative examination of planetary wave signatures in the Es layer and geopotential height variations. The findings reveal westward and eastward wave components with specific wavenumbers and periods, suggesting the involvement of westward propagating quasi 6‐day, quasi 4‐day planetary waves, and eastward propagating Kelvin waves with a period of around 3 days in Es layer formation at low latitudes.
- Published
- 2024
- Full Text
- View/download PDF
3. Ground-based and additional science support for SMILE
- Author
-
J. A. Carter, M. Dunlop, C. Forsyth, K. Oksavik, E. Donovon, A. Kavanagh, S. E. Milan, T. Sergienko, R. C. Fear, D. G. Sibeck, M. Connors, T. Yeoman, X. Tan, M. G. G. T. Taylor, K. McWilliams, J. Gjerloev, R. Barnes, D. D. Billet, G. Chisham, A. Dimmock, M. P. Freeman, D.-S. Han, M. D. Hartinger, S.-Y. W. Hsieh, Z.-J. Hu, M. K. James, L. Juusola, K. Kauristie, E. A. Kronberg, M. Lester, J. Manuel, J. Matzka, I. McCrea, Y. Miyoshi, J. Rae, L. Ren, F. Sigernes, E. Spanswick, K. Sterne, A. Steuwer, T. Sun, M.-T. Walach, B. Walsh, C. Wang, J. Weygand, J. Wild, J. Yan, J. Zhang, and Q.-H. Zhang
- Subjects
magnetosphere ,ionosphere ,magnetosphere–ionosphere coupling ,ground-based experimentation ,smile ,conjunctions ,missions ,Science ,Geophysics. Cosmic physics ,QC801-809 ,Environmental sciences ,GE1-350 - Abstract
The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions, and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere. Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission. Here, we describe current community efforts to prepare for SMILE, and the benefits and context various experiments that have explicitly expressed support for SMILE can offer. A dedicated group of international scientists representing many different experiment types and geographical locations, the Ground-based and Additional Science Working Group, is facilitating these efforts. Preparations include constructing an online SMILE Data Fusion Facility, the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar, and the consideration of particular observing strategies and spacecraft conjunctions. We anticipate growing interest and community engagement with the SMILE mission, and we welcome novel ideas and insights from the solar-terrestrial community.
- Published
- 2024
- Full Text
- View/download PDF
4. Difference spectrum fitting of the ion–neutral collision frequency from dual-frequency EISCAT measurements
- Author
-
F. Günzkofer, G. Stober, D. Pokhotelov, Y. Miyoshi, and C. Borries
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
The plasma–neutral coupling in the mesosphere–lower thermosphere strongly depends on the ion–neutral collision frequency across that region. Most commonly, the collision frequency profile is calculated from the climatologies of atmospheric models. However, previous measurements indicated that the collision frequency can deviate notably from the climatological average. Direct measurement of the ion–neutral collision frequency with multifrequency incoherent scatter radar (ISR) measurements has been discussed before, though actual measurements have been rare. The previously applied multifrequency analysis method requires a special simultaneous fit of the two incoherent scatter spectra, which is not possible with standard ISR analysis software. The difference spectrum method allows us to infer ion–neutral collision frequency profiles from multifrequency ISR measurements based on standard incoherent scatter analysis software, such as the Grand Unified Incoherent Scatter Design and Analysis Package (GUISDAP) software. In this work, we present the first results by applying the difference spectrum method. Ion–neutral collision frequency profiles obtained from several multifrequency EISCAT ISR campaigns are presented. The profiles obtained with the difference spectrum method are compared to previous collision frequency measurements, both from multifrequency ISR and other measurements, as well as results from empirical and comprehensive atmosphere models. Ion–neutral collision frequency measurements can be applied to improve first-principle ionospheric models.
- Published
- 2023
- Full Text
- View/download PDF
5. The variable source of the plasma sheet during a geomagnetic storm
- Author
-
L. M. Kistler, K. Asamura, S. Kasahara, Y. Miyoshi, C. G. Mouikis, K. Keika, S. M. Petrinec, M. L. Stevens, T. Hori, S. Yokota, and I. Shinohara
- Subjects
Science - Abstract
Abstract Both solar wind and ionospheric sources contribute to the magnetotail plasma sheet, but how their contribution changes during a geomagnetic storm is an open question. The source is critical because the plasma sheet properties control the enhancement and decay rate of the ring current, the main cause of the geomagnetic field perturbations that define a geomagnetic storm. Here we use the solar wind composition to track the source and show that the plasma sheet source changes from predominantly solar wind to predominantly ionospheric as a storm develops. Additionally, we find that the ionospheric plasma during the storm main phase is initially dominated by singly ionized hydrogen (H+), likely from the polar wind, a low energy outflow from the polar cap, and then transitions to the accelerated outflow from the dayside and nightside auroral regions, identified by singly ionized oxygen (O+). These results reveal how the access to the magnetotail of the different sources can change quickly, impacting the storm development.
- Published
- 2023
- Full Text
- View/download PDF
6. Direct Evidence of Drift‐Compressional Wave Generation in the Earth's Magnetosphere Detected by Arase
- Author
-
K. Yamamoto, A. V. Rubtsov, D. V. Kostarev, P. N. Mager, D. Yu. Klimushkin, M. Nosé, A. Matsuoka, K. Asamura, Y. Miyoshi, S. Yokota, S. Kasahara, T. Hori, K. Keika, Y. Kasahara, A. Kumamoto, F. Tsuchiya, M. Shoji, S. Nakamura, and I. Shinohara
- Subjects
ULF wave ,drift‐compressional mode ,Arase satellite ,ring current ,nose structure ,drift resonance ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract We present the first direct evidence of an in situ excitation of drift‐compressional waves driven by drift resonance with ring current protons in the magnetosphere. Compressional Pc4–5 waves with frequencies of 4–12 mHz were observed by the Arase satellite near the magnetic equator at L ∼ 6 in the evening sector on 19 November 2018. Estimated azimuthal wave numbers (m) ranged from −100 to −130. The observed frequency was consistent with that calculated using the drift‐compressional mode theory, whereas the plasma anisotropy was too small to excite the drift‐mirror mode. We discovered that the energy source of the wave was a drift resonance instability, which was generated by the negative radial gradient in a proton phase space density at 20–25 keV. This proton distribution is attributed to a temporal variation of the electric field, which formed the observed multiple‐nose structures of ring current protons.
- Published
- 2024
- Full Text
- View/download PDF
7. Thermospheric Wind Response to March 2023 Storm: Largest Wind Ever Observed With a Fabry‐Perot Interferometer in Tromsø, Norway Since 2009
- Author
-
S. Oyama, H. Vanhamäki, L. Cai, A. Shinbori, K. Hosokawa, T. Sakanoi, K. Shiokawa, A. Aikio, I. I. Virtanen, Y. Ogawa, Y. Miyoshi, S. Kurita, and N. Nishitani
- Subjects
thermosphere ,ionosphere ,high latitude ,geomagnetic storm ,Meteorology. Climatology ,QC851-999 ,Astrophysics ,QB460-466 - Abstract
Abstract Solar cycles 24–25 were quiet until a geomagnetic storm with a Sym‐H index of −170 nT occurred in late March 2023. On March 23–24, a Fabry‐Perot interferometer (FPI; 630 nm) in Tromsø, Norway, recorded the highest thermospheric wind speed of over 500 m/s since 2009. Comparisons with magnetometer readings in Scandinavia showed that a large amount of electromagnetic energy was transferred to the ionosphere‐thermosphere system. Total electron content maps suggested an enlarged auroral oval and revealed that the FPI observed winds near the polar cap instead of inside the oval for a long period during the storm main phase. The FPI wind had a strong equatorward component during the storm, likely because of the powerful anti‐sunward ionospheric plasma flow in the polar cap. The positive Y‐component of the IMF for 6 days before the storm caused a successive westward component of the FPI‐measured wind during the storm main phase. On March 24, the first day of the storm recovery phase, thermospheric wind disturbed and the ionospheric density decreased significantly at high latitudes. This density depression lasted for several days, and a large amount of electromagnetic energy during the storm modified the thermospheric dynamics and ionospheric plasma density.
- Published
- 2024
- Full Text
- View/download PDF
8. A Triggering Process for Nonlinear EMIC Waves Driven by the Compression of the Dayside Magnetosphere
- Author
-
C.‐W. Jun, Y. Miyoshi, S. Nakamura, M. Shoji, T. Hori, J. Bortnik, L. Lyons, I. Shinohara, and A. Matsuoka
- Subjects
EMIC waves ,nonlinear wave growth ,inner magnetosphere ,in situ observation ,compression of the dayside magnetosphere ,magnetospheric plasma waves ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract Using the Arase and Van Allen Probes satellite observations, we investigate the nonlinear electromagnetic ion cyclotron (EMIC) rising‐tone (RT) emissions with an increase of the solar wind dynamic pressure in the dayside magnetosphere. We find that EMIC RT emissions are accompanied by the extended dayside uniform zone (DUZ) over |MLAT|
- Published
- 2024
- Full Text
- View/download PDF
9. Simultaneous Precipitation of Sub‐Relativistic Electron Microburst and Pulsating Aurora Electrons
- Author
-
T. Namekawa, T. Mitani, K. Asamura, Y. Miyoshi, K. Hosokawa, M. Lessard, C. Moser, A. J. Halford, T. Sakanoi, M. Kawamura, M. Nose, R. Nomura, M. Teramoto, M. Shumko, K. A. Lynch, A. N. Jaynes, and M. G. McHarg
- Subjects
Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract We have identified for the first time an energy‐time dispersion of precipitating electron flux in a pulsating aurora patch, ranging from 6.7 to 580 keV, through simultaneous in‐situ observations of sub‐relativistic electrons of microburst precipitations and lower‐energy electrons using the Loss through Auroral Microburst Pulsation sounding rocket launched from the Poker Flat Research Range in Alaska. Our observations reveal that precipitating electrons with energies of 180–320 keV were observed first, followed by 250–580 keV electrons 0–30 ms later, and finally, after 500–1,000 ms, 6.7–14.6 keV electrons were observed. The identified energy‐time dispersion is consistent with the theoretical estimation that the relativistic electron microbursts are a high‐energy tail of pulsating aurora electrons, which are caused by chorus waves propagating along the field line.
- Published
- 2023
- Full Text
- View/download PDF
10. Direct observations of energy transfer from resonant electrons to whistler-mode waves in magnetosheath of Earth
- Author
-
N. Kitamura, T. Amano, Y. Omura, S. A. Boardsen, D. J. Gershman, Y. Miyoshi, M. Kitahara, Y. Katoh, H. Kojima, S. Nakamura, M. Shoji, Y. Saito, S. Yokota, B. L. Giles, W. R. Paterson, C. J. Pollock, A. C. Barrie, D. G. Skeberdis, S. Kreisler, O. Le Contel, C. T. Russell, R. J. Strangeway, P.-A. Lindqvist, R. E. Ergun, R. B. Torbert, and J. L. Burch
- Subjects
Science - Abstract
Excitation of whistler-mode waves by cyclotron instability is considered as the likely generation process of the waves. Here, the authors show direct observational evidence for locally ongoing secular energy transfer from the resonant electrons to the whistler-mode waves in Earth’s magnetosheath.
- Published
- 2022
- Full Text
- View/download PDF
11. Observation of an Electron Microburst With an Inverse Time‐Of‐Flight Energy Dispersion
- Author
-
M. Shumko, Y. Miyoshi, L. W. Blum, A. J. Halford, A. W. Breneman, A. T. Johnson, J. G. Sample, D. M. Klumpar, and H. E. Spence
- Subjects
microburst ,chorus wave ,dispersion ,FIREBIRD ,CubeSat ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract Interactions between whistler mode chorus waves and electrons are a dominant mechanism for particle acceleration and loss in the outer radiation belt. One form of this loss is electron microburst precipitation: a sub‐second intense burst of electrons. Despite previous investigations, details regarding the microburst‐chorus scattering mechanism—such as dominant resonance harmonic—are largely unconstrained. One way to observationally probe this is via the time‐of‐flight energy dispersion. If a single cyclotron resonance is dominant, then higher energy electrons will resonate at higher magnetic latitudes: sometimes resulting in an inverse time‐of‐flight dispersion with lower‐energy electrons leading. Here we present a clear example of this phenomena, observed by a FIREBIRD‐II CubeSat on 27 August 2015, that shows good agreement with the Miyoshi‐Saito time‐of‐flight model. When constrained by this observation, the Miyoshi‐Saito model predicts that a relatively narrowband chorus wave with a ∼0.2 of the equatorial electron gyrofrequency scattered the microburst.
- Published
- 2023
- Full Text
- View/download PDF
12. Monthly Climatologies of Zonal‐Mean and Tidal Winds in the Thermosphere as Observed by ICON/MIGHTI During April 2020–March 2022
- Author
-
Y. Yamazaki, B. J. Harding, L. Qiu, C. Stolle, T. A. Siddiqui, Y. Miyoshi, C. R. Englert, and S. L. England
- Subjects
thermosphere ,zonal‐mean winds ,tides ,ionospheric connection explorer (ICON) ,MIGHTI ,HWM14 ,Astronomy ,QB1-991 ,Geology ,QE1-996.5 - Abstract
Abstract Version 5 (v05) of the thermospheric wind data from the Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) instrument on the Ionospheric Connection Explorer (ICON) mission has been recently released, which largely avoids local‐time dependent artificial baseline drifts that are found in previous versions of the ICON/MIGHTI wind data. This paper describes monthly climatologies of zonal‐mean winds and tides based on the v05 ICON/MIGHTI data under geomagnetically quiet conditions (Hp30
- Published
- 2023
- Full Text
- View/download PDF
13. Simulated seasonal impact on middle atmospheric ozone from high-energy electron precipitation related to pulsating aurorae
- Author
-
P. T. Verronen, A. Kero, N. Partamies, M. E. Szeląg, S.-I. Oyama, Y. Miyoshi, and E. Turunen
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Recent simulation studies have provided evidence that a pulsating aurora (PsA) associated with high-energy electron precipitation is having a clear local impact on ozone chemistry in the polar middle mesosphere. However, it is not clear if the PsA is frequent enough to cause longer-term effects of measurable magnitude. There is also an open question of the relative contribution of PsA-related energetic electron precipitation (PsA EEP) to the total atmospheric forcing by solar energetic particle precipitation (EPP). Here we investigate the PsA-EEP impact on stratospheric and mesospheric odd hydrogen, odd nitrogen, and ozone concentrations. We make use of the Whole Atmosphere Community Climate Model and recent understanding on PsA frequency, latitudinal and magnetic local time extent, and energy-flux spectra. Analysing an 18-month time period covering all seasons, we particularly look at PsA-EEP impacts at two polar observation stations located at opposite hemispheres: Tromsø in the Northern Hemisphere (NH) and Halley Research Station in the Southern Hemisphere (SH). We find that PsA EEP can have a measurable impact on ozone concentration above 30 km altitude, with ozone depletion by up to 8 % seen in winter periods due to PsA-EEP-driven NOx enhancement. We also find that direct mesospheric NOx production by high-energy electrons (E> 100 keV) accounts for about half of the PsA-EEP-driven upper stratospheric ozone depletion. A larger PsA-EEP impact is seen in the SH where the background dynamical variability is weaker than in the NH. Clearly indicated from our results, consideration of polar vortex dynamics is required to understand PsA-EEP impacts seen at ground observation stations, especially in the NH. We conclude that PsA-EEP has the potential to make an important contribution to the total EPP forcing; thus, it should be considered in atmospheric and climate simulations.
- Published
- 2021
- Full Text
- View/download PDF
14. Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby
- Author
-
M. Volwerk, B. Sánchez-Cano, D. Heyner, S. Aizawa, N. André, A. Varsani, J. Mieth, S. Orsini, W. Baumjohann, D. Fischer, Y. Futaana, R. Harrison, H. Jeszenszky, I. Kazumasa, G. Laky, H. Lichtenegger, A. Milillo, Y. Miyoshi, R. Nakamura, F. Plaschke, I. Richter, S. Rojas Mata, Y. Saito, D. Schmid, D. Shiota, and C. Simon Wedlund
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Out of the two Venus flybys that BepiColombo uses as a gravity assist manoeuvre to finally arrive at Mercury, the first took place on 15 October 2020. After passing the bow shock, the spacecraft travelled along the induced magnetotail, crossing it mainly in the YVSO direction. In this paper, the BepiColombo Mercury Planetary Orbiter Magnetometer (MPO-MAG) data are discussed, with support from three other plasma instruments: the Planetary Ion Camera (SERENA-PICAM) of the SERENA suite, the Mercury Electron Analyser (MEA), and the BepiColombo Radiation Monitor (BERM). Behind the bow shock crossing, the magnetic field showed a draping pattern consistent with field lines connected to the interplanetary magnetic field wrapping around the planet. This flyby showed a highly active magnetotail, with e.g. strong flapping motions at a period of ∼7 min. This activity was driven by solar wind conditions. Just before this flyby, Venus's induced magnetosphere was impacted by a stealth coronal mass ejection, of which the trailing side was still interacting with it during the flyby. This flyby is a unique opportunity to study the full length and structure of the induced magnetotail of Venus, indicating that the tail was most likely still present at about 48 Venus radii.
- Published
- 2021
- Full Text
- View/download PDF
15. Penetration of MeV electrons into the mesosphere accompanying pulsating aurorae
- Author
-
Y. Miyoshi, K. Hosokawa, S. Kurita, S.-I. Oyama, Y. Ogawa, S. Saito, I. Shinohara, A. Kero, E. Turunen, P. T. Verronen, S. Kasahara, S. Yokota, T. Mitani, T. Takashima, N. Higashio, Y. Kasahara, S. Matsuda, F. Tsuchiya, A. Kumamoto, A. Matsuoka, T. Hori, K. Keika, M. Shoji, M. Teramoto, S. Imajo, C. Jun, and S. Nakamura
- Subjects
Medicine ,Science - Abstract
Abstract Pulsating aurorae (PsA) are caused by the intermittent precipitations of magnetospheric electrons (energies of a few keV to a few tens of keV) through wave-particle interactions, thereby depositing most of their energy at altitudes ~ 100 km. However, the maximum energy of precipitated electrons and its impacts on the atmosphere are unknown. Herein, we report unique observations by the European Incoherent Scatter (EISCAT) radar showing electron precipitations ranging from a few hundred keV to a few MeV during a PsA associated with a weak geomagnetic storm. Simultaneously, the Arase spacecraft has observed intense whistler-mode chorus waves at the conjugate location along magnetic field lines. A computer simulation based on the EISCAT observations shows immediate catalytic ozone depletion at the mesospheric altitudes. Since PsA occurs frequently, often in daily basis, and extends its impact over large MLT areas, we anticipate that the PsA possesses a significant forcing to the mesospheric ozone chemistry in high latitudes through high energy electron precipitations. Therefore, the generation of PsA results in the depletion of mesospheric ozone through high-energy electron precipitations caused by whistler-mode chorus waves, which are similar to the well-known effect due to solar energetic protons triggered by solar flares.
- Published
- 2021
- Full Text
- View/download PDF
16. STATISTICAL PROPERTIES OF AURORAL KILOMETER RADIATION: BASED ON ERG (ARASE) SATELLITE DATA
- Author
-
V.I. Kolpak, M.M. Mogilevsky, D.V. Chugunin, A.A. Chernyshov, I.L. Moiseenko, A. Kumamoto, F. Tsuchiya, Y. Kasahara, M. Shoji, Y. Miyoshi, and I. Shinohara
- Subjects
auroral kilometer radiation ,magnetosphere ,auroral activity ,satellite measurements ,Astrophysics ,QB460-466 - Abstract
In this work, we have studied the signals of auroral kilometer radiation (AKR) from sources in the auroral regions of the Northern and Southern hemispheres simultaneously recorded by one satellite. We have carried out a detailed statistical analysis of more than 20 months of continuous AKR measurements made by the ERG satellite (also known as Arase). This made it possible to confirm the previously obtained results on the location of AKR sources and seasonal changes in the radiation intensity. Open questions about the processes in the AKR source can be solved using data on the radiation pattern under various geomagnetic conditions. To answer these questions, we have estimated the cone angle of directional diagrams in the dusk and dawn sectors of Earth’s magnetosphere.
- Published
- 2021
- Full Text
- View/download PDF
17. Butterfly Distribution of Relativistic Electrons Driven by Parallel Propagating Lower Band Whistler Chorus Waves
- Author
-
S. Saito and Y. Miyoshi
- Subjects
radiation belt electron ,wave‐particle interaction ,whistler chorus wave ,test‐particle simulation ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract We report results from a test particle simulation to reveal that electron scattering driven by lower band whistler chorus waves propagating along a magnetic field line plays an important role to produce the butterfly distribution of relativistic electrons. The results show that two nonlinear scattering processes, which are the phase trapping and the dislocation process, contribute to the formation of the butterfly distribution within a minute. We confirm that the quasilinear diffusion estimated from the whistler chorus waves are too slow to reproduce the butterfly distribution within a minute. The simulation results also show that there is the upper limit of rapid electron acceleration. We expect that the upper limit of the rapid flux enhancement is an evidence that the phase trapping process contributes to relativistic electron acceleration in the heart of the outer radiation belt.
- Published
- 2022
- Full Text
- View/download PDF
18. Oxygen torus and its coincidence with EMIC wave in the deep inner magnetosphere: Van Allen Probe B and Arase observations
- Author
-
M. Nosé, A. Matsuoka, A. Kumamoto, Y. Kasahara, M. Teramoto, S. Kurita, J. Goldstein, L. M. Kistler, S. Singh, A. Gololobov, K. Shiokawa, S. Imajo, S. Oimatsu, K. Yamamoto, Y. Obana, M. Shoji, F. Tsuchiya, I. Shinohara, Y. Miyoshi, W. S. Kurth, C. A. Kletzing, C. W. Smith, R. J. MacDowall, H. Spence, and G. D. Reeves
- Subjects
Oxygen torus ,EMIC wave ,ULF wave ,Ion composition ,Inner magnetosphere ,Geography. Anthropology. Recreation ,Geodesy ,QB275-343 ,Geology ,QE1-996.5 - Abstract
Abstract We investigate the longitudinal structure of the oxygen torus in the inner magnetosphere for a specific event found on 12 September 2017, using simultaneous observations from the Van Allen Probe B and Arase satellites. It is found that Probe B observed a clear enhancement in the average plasma mass (M) up to 3–4 amu at L = 3.3–3.6 and magnetic local time (MLT) = 9.0 h. In the afternoon sector at MLT ~ 16.0 h, both Probe B and Arase found no clear enhancements in M. This result suggests that the oxygen torus does not extend over all MLT but is skewed toward the dawn. Since a similar result has been reported for another event of the oxygen torus in a previous study, a crescent-shaped torus or a pinched torus centered around dawn may be a general feature of the O+ density enhancement in the inner magnetosphere. We newly find that an electromagnetic ion cyclotron (EMIC) wave in the H+ band appeared coincidently with the oxygen torus. From the lower cutoff frequency of the EMIC wave, the ion composition of the oxygen torus is estimated to be 80.6% H+, 3.4% He+, and 16.0% O+. According to the linearized dispersion relation for EMIC waves, both He+ and O+ ions inhibit EMIC wave growth and the stabilizing effect is stronger for He+ than O+. Therefore, when the H+ fraction or M is constant, the denser O+ ions are naturally accompanied by the more tenuous He+ ions, resulting in a weaker stabilizing effect (i.e., larger growth rate). From the Probe B observations, we find that the growth rate becomes larger in the oxygen torus than in the adjacent regions in the plasma trough and the plasmasphere.
- Published
- 2020
- Full Text
- View/download PDF
19. Quantifying the Size and Duration of a Microburst‐Producing Chorus Region on 5 December 2017
- Author
-
S. S. Elliott, A. W. Breneman, C. Colpitts, J. M. Pettit, C. A. Cattell, A. J. Halford, M. Shumko, J. Sample, A. T. Johnson, Y. Miyoshi, Y. Kasahara, C. M. Cully, S. Nakamura, T. Mitani, T. Hori, I. Shinohara, K. Shiokawa, S. Matsuda, M. Connors, M. Ozaki, and J. Manninen
- Published
- 2022
- Full Text
- View/download PDF
20. Collaborative Research Activities of the Arase and Van Allen Probes
- Author
-
Y. Miyoshi, I. Shinohara, S. Ukhorskiy, S. G. Claudepierre, T. Mitani, T. Takashima, T. Hori, O. Santolik, I. Kolmasova, S. Matsuda, Y. Kasahara, M. Teramoto, Y. Katoh, M. Hikishima, H. Kojima, S. Kurita, S. Imajo, N. Higashio, S. Kasahara, S. Yokota, K. Asamura, Y. Kazama, S.-Y. Wang, C.-W. Jun, Y. Kasaba, A. Kumamoto, F. Tsuchiya, M. Shoji, S. Nakamura, M. Kitahara, A. Matsuoka, K. Shiokawa, K. Seki, M. Nosé, K. Takahashi, C. Martinez-Calderon, G. Hospodarsky, C. Colpitts, Craig Kletzing, J. Wygant, H. Spence, D. N. Baker, G. D. Reeves, J. B. Blake, and L. Lanzerotti
- Published
- 2022
- Full Text
- View/download PDF
21. BepiColombo’s Cruise Phase: Unique Opportunity for Synergistic Observations
- Author
-
L. Z. Hadid, V. Génot, S. Aizawa, A. Milillo, J. Zender, G. Murakami, J. Benkhoff, I. Zouganelis, T. Alberti, N. André, Z. Bebesi, F. Califano, A. P. Dimmock, M. Dosa, C. P. Escoubet, L. Griton, G. C. Ho, T. S. Horbury, K. Iwai, M. Janvier, E. Kilpua, B. Lavraud, A. Madar, Y. Miyoshi, D. Müller, R. F. Pinto, A. P. Rouillard, J. M. Raines, N. Raouafi, F. Sahraoui, B. Sánchez-Cano, D. Shiota, R. Vainio, and A. Walsh
- Subjects
solar wind ,multi-spacecraft measurements ,inner heliosphere ,spacecraft mission ,coordinated measurements ,Astronomy ,QB1-991 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances (0.28 AU–0.5 AU). Hence, the various spacecraft configurations and the combined in-situ and remote sensing measurements from the different spacecraft, offer unique opportunities for BepiColombo to be part of these unprecedented multipoint synergistic observations and for potential scientific studies in the inner heliosphere, even before its orbit insertion around Mercury in December 2025. The main goal of this report is to present the coordinated observation opportunities during the cruise phase of BepiColombo (excluding the planetary flybys). We summarize the identified science topics, the operational instruments, the method we have used to identify the windows of opportunity and discuss the planning of joint observations in the future.
- Published
- 2021
- Full Text
- View/download PDF
22. Impact of gravity wave drag on the thermospheric circulation: implementation of a nonlinear gravity wave parameterization in a whole-atmosphere model
- Author
-
Y. Miyoshi and E. Yiğit
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
To investigate the effects of the gravity wave (GW) drag on the general circulation in the thermosphere, a nonlinear GW parameterization that estimates the GW drag in the whole-atmosphere system is implemented in a whole-atmosphere general circulation model (GCM). Comparing the simulation results obtained with the whole-atmosphere scheme with the ones obtained with a conventional linear scheme, we study the GW effects on the thermospheric dynamics for solstice conditions. The GW drag significantly decelerates the mean zonal wind in the thermosphere. The GWs attenuate the migrating semidiurnal solar-tide (SW2) amplitude in the lower thermosphere and modify the latitudinal structure of the SW2 above a 150 km height. The SW2 simulated by the GCM based on the nonlinear whole-atmosphere scheme agrees well with the observed SW2. The GW drag in the lower thermosphere has zonal wavenumber 2 and semidiurnal variation, while the GW drag above a 150 km height is enhanced in high latitude. The GW drag in the thermosphere is a significant dynamical factor and plays an important role in the momentum budget of the thermosphere. Therefore, a GW parameterization accounting for thermospheric processes is essential for coarse-grid whole-atmosphere GCMs in order to more realistically simulate the atmosphere–ionosphere system.
- Published
- 2019
- Full Text
- View/download PDF
23. Statistical Properties of Molecular Ions in the Ring Current Observed by the Arase (ERG) Satellite
- Author
-
K. Seki, K. Keika, S. Kasahara, S. Yokota, T. Hori, K. Asamura, N. Higashio, M. Takada, Y. Ogawa, A. Matsuoka, M. Teramoto, Y. Miyoshi, and I. Shinohara
- Subjects
magnetosphere ,ring current ,molecular ions ,ion outflow ,geospace storm ,ERG/Arase ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract Molecular ions in the magnetosphere can be a tracer of fast ion outflows from the deep ionosphere. Statistical properties of molecular ions (O2+/NO+/N2+) in the ring current are investigated based on ion composition measurements (
- Published
- 2019
- Full Text
- View/download PDF
24. Long‐Term Monitoring of Energetic Protons at the Bottom of Earth’s Radiation Belt
- Author
-
K. Yoshioka, Y. Miyoshi, S. Kurita, M. Teramoto, F. Tsuchiya, A. Yamazaki, G. Murakami, T. Kimura, H. Kita, I. Yoshikawa, and Y. Kasaba
- Subjects
annual variation ,Earth's radiation belt ,space telescope ,Meteorology. Climatology ,QC851-999 ,Astrophysics ,QB460-466 - Abstract
Abstract The energetic particles in the Earth's radiation belt are known to fluctuate over various timescales. Although observations using satellites have been made for more than 50 years, there are few examples of continuous and long‐term observations at low altitude ( 30 MeV) in this orbit can be observed. The results show a clear dependence on solar activity. At around L = 2, it is found that the variation in the radiation belt proton flux is controlled by both the flux of the galactic cosmic rays and the neutral density of the thermosphere. The former one is the source process of high‐energy charged particles in the inner radiation belt, and the latter is the loss process due to the Coulomb collision. It is also found that the influence of galactic cosmic ray fluctuations becomes smaller as the L‐value moves closer to 1.
- Published
- 2021
- Full Text
- View/download PDF
25. Cusp and Nightside Auroral Sources of O+ in the Plasma Sheet
- Author
-
L. M. Kistler, C. G. Mouikis, K. Asamura, S. Yokota, S. Kasahara, Y. Miyoshi, K. Keika, A. Matsuoka, I. Shinohara, T. Hori, N. Kitamura, S. M. Petrinec, I. J. Cohen, and D. C. Delcourt
- Published
- 2019
- Full Text
- View/download PDF
26. A new predictive model for prognosis in oligometastatic prostate cancer
- Author
-
M. Yasui, Y. Miyoshi, S. Yoneyama, T. Kawahara, Y. Nakagami, Y. Ohno, J. Iizuka, Y. Hashimoto, H. Tsumura, K. Tabata, and H. Uemura
- Subjects
Diseases of the genitourinary system. Urology ,RC870-923 ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Published
- 2020
- Full Text
- View/download PDF
27. Excitation of Storm Time Pc5 ULF Waves by Ring Current Ions Based on the Drift‐Kinetic Simulation
- Author
-
T. Yamakawa, K. Seki, T. Amano, N. Takahashi, and Y. Miyoshi
- Subjects
Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract Storm time Pc5 waves are considered to be excited through the drift‐bounce resonance by ring current ions associated with the injection from the magnetotail. Using the Geospace Environment Modeling System for Integrated Studies–Ring Current simulation, a drift‐kinetic and self‐consistent model for ring current particles, we investigate the excitation mechanism of these waves in the inner magnetosphere. The power spectra of electromagnetic field fluctuations show the excitation of both poloidal and toroidal mode waves in Pc5 frequency range. It is found that these waves are fundamental mode waves with the azimuthal wave number m~ − 20 and excited through the drift resonance with the drifting ions with energies of 80–120 keV. The simulation indicates that global distribution of wave power coincides with the positive local growth rate mainly contributed by the positive phase space density gradient in energy.
- Published
- 2019
- Full Text
- View/download PDF
28. Low-energy particle experiments–ion mass analyzer (LEPi) onboard the ERG (Arase) satellite
- Author
-
K. Asamura, Y. Kazama, S. Yokota, S. Kasahara, and Y. Miyoshi
- Subjects
ERG satellite ,Ion analyzer ,Geography. Anthropology. Recreation ,Geodesy ,QB275-343 ,Geology ,QE1-996.5 - Abstract
Abstract Low-energy ion experiments–ion mass analyzer (LEPi) is one of the particle instruments onboard the ERG satellite. LEPi is an ion energy-mass spectrometer which covers the range of particle energies from < 0.01 to 25 keV/q. Species of incoming ions are discriminated by a combination of electrostatic energy-per-charge analysis and the time-of-flight technique. The sensor has a planar field-of-view, which provides 4$$\pi$$ π steradian coverage by using the spin motion of the satellite. LEPi started its nominal observation after the initial checkout and commissioning phase in space.
- Published
- 2018
- Full Text
- View/download PDF
29. Substorm‐Associated Ionospheric Flow Fluctuations During the 27 March 2017 Magnetic Storm: SuperDARN‐Arase Conjunction
- Author
-
T. Hori, N. Nishitani, S. G. Shepherd, J. M. Ruohoniemi, M. Connors, M. Teramoto, S. Nakano, K. Seki, N. Takahashi, S. Kasahara, S. Yokota, T. Mitani, T. Takashima, N. Higashio, A. Matsuoka, K. Asamura, Y. Kazama, S.‐Y. Wang, S. W. Y. Tam, T.‐F. Chang, B.‐J. Wang, Y. Miyoshi, and I. Shinohara
- Published
- 2018
- Full Text
- View/download PDF
30. Coincident Observations by the Kharkiv IS Radar and Ionosonde, DMSP and Arase (ERG) Satellites, and FLIP Model Simulations: Implications for the NRLMSISE‐00 Hydrogen Density, Plasmasphere, and Ionosphere
- Author
-
D. V. Kotov, P. G. Richards, V. Truhlík, O. V. Bogomaz, M. O. Shulha, N. Maruyama, M. Hairston, Y. Miyoshi, Y. Kasahara, A. Kumamoto, F. Tsuchiya, A. Matsuoka, I. Shinohara, M. Hernández‐Pajares, I. F. Domnin, T. G. Zhivolup, L. Ya. Emelyanov, and Ya. M. Chepurnyy
- Published
- 2018
- Full Text
- View/download PDF
31. Effects of the planetary waves on the MLT airglow
- Author
-
F. Egito, H. Takahashi, and Y. Miyoshi
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
The planetary-wave-induced airglow variability in the mesosphere and lower thermosphere (MLT) is investigated using simulations with the general circulation model (GCM) of Kyushu University. The model capabilities enable us to simulate the MLT OI557.7 nm, O2b(0–1), and OH(6–2) emissions. The simulations were performed for the lower-boundary meteorological conditions of 2005. The spectral analysis reveals that at middle latitudes, oscillations of the emission rates with the period of 2–20 days appear throughout the year. The 2-day oscillations are prominent in the summer and the 5-, 10-, and 16-day oscillations dominate from the autumn to spring equinoxes. The maximal amplitude of the variations induced by the planetary waves was 34 % in OI557.7 nm, 17 % in O2b(0–1), and 8 % in OH(6–2). The results were compared to those observed in the middle latitudes. The GCM simulations also enabled us to investigate vertical transport processes and their effects on the emission layers. The vertical transport of atomic oxygen exhibits similar periodic variations to those observed in the emission layers induced by the planetary waves. The results also show that the vertical advection of atomic oxygen due to the wave motion is an important factor in the signatures of the planetary waves in the emission rates.
- Published
- 2017
- Full Text
- View/download PDF
32. Start of the ITER Central Solenoid Assembly
- Author
-
T. Schild, A. Bruton, C. Cormany, F. Gauthier, C. Jong, M. Liao, N. Mitchell, A. Mariani, Y. Miyoshi, N. Martovetsky, D. Everitt, K. Freudenberg, D. Vandergriff, D. Hughes, G. Rossano, J. Smith, R. Potts, A. Stephens, P. Decool, and C. Nguyen Thanh Dao
- Subjects
Electrical and Electronic Engineering ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials - Published
- 2022
- Full Text
- View/download PDF
33. Channeling of Auroral Kilometric Radiation During Geomagnetic Disturbances
- Author
-
M. M. Mogilevsky, D. V. Chugunin, A. A. Chernyshov, V. I. Kolpak, I. L. Moiseenko, Y. Kasahara, and Y. Miyoshi
- Subjects
Physics and Astronomy (miscellaneous) - Abstract
The electromagnetic fields measured on the ERG satellite are presented and their comparative analysis with measurements on the WIND satellite is carried out. The possibility of capturing auroral kilometric radiation (AKR) into plasma channels, which was first discovered on the ISEE satellite, has been confirmed. Plasma inhomogeneities, formed with an increase in geomagnetic activity, are extended along the magnetic field and form channels along which the radiation propagates. The trapped radiation spectrum is distorted because of the relative position of the source and channel at low frequencies. The distortion of the AKR spectrum at high frequencies is related to the frequency dependence of propagation conditions in the channel. Asymmetry of the processes of formation of plasma channels and AKR sources in the northern and southern auroral regions is found.
- Published
- 2022
- Full Text
- View/download PDF
34. Using Van Allen Probes and Arase Observations to Develop an Empirical Plasma Density Model in the Inner Zone
- Author
-
D. P. Hartley, G. S. Cunningham, J.‐F. Ripoll, D. M. Malaspina, Y. Kasahara, Y. Miyoshi, S. Matsuda, S. Nakamura, F. Tsuchiya, M. Kitahara, A. Kumamoto, I. Shinohara, and A. Matsuoka
- Subjects
Geophysics ,Space and Planetary Science - Published
- 2023
- Full Text
- View/download PDF
35. High-speed stereoscopy of aurora
- Author
-
R. Kataoka, Y. Fukuda, H. A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, H. Dahlgren, and D. Hampton
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
We performed 100 fps stereoscopic imaging of aurora for the first time. Two identical sCMOS cameras equipped with narrow field-of-view lenses (15° by 15°) were directed at magnetic zenith with the north–south base distance of 8.1 km. Here we show the best example that a rapidly pulsating diffuse patch and a streaming discrete arc were observed at the same time with different parallaxes, and the emission altitudes were estimated as 85–95 km and > 100 km, respectively. The estimated emission altitudes are consistent with those estimated in previous studies, and it is suggested that high-speed stereoscopy is useful to directly measure the emission altitudes of various types of rapidly varying aurora. It is also found that variation of emission altitude is gradual (e.g., 10 km increase over 5 s) for pulsating patches and is fast (e.g., 10 km increase within 0.5 s) for streaming arcs.
- Published
- 2016
- Full Text
- View/download PDF
36. Simultaneous measurements of cores in multi-core fibre using OTDR and fan-in/out devices.
- Author
-
M. Ohashi, H. Uemura, Katsuhiro Takenaga, S. Matsuo, Hirokazu Kubota, and Y. Miyoshi
- Published
- 2015
- Full Text
- View/download PDF
37. Multi‐Event Analysis of Magnetosphere‐Ionosphere Coupling of Nighttime Medium‐Scale Traveling Ionospheric Disturbances From the Ground and the Arase Satellite
- Author
-
K. Kawai, K. Shiokawa, Y. Otsuka, S. Oyama, M. G. Connors, Y. Kasahara, Y. Kasaba, S. Nakamura, F. Tsuchiya, A. Kumamoto, A. Shinbori, A. Matsuoka, I. Shinohara, and Y. Miyoshi
- Subjects
Geophysics ,Space and Planetary Science - Published
- 2023
- Full Text
- View/download PDF
38. Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm
- Author
-
A. Ieda, Y. Nishimura, Y. Miyashita, V. Angelopoulos, A. Runov, T. Nagai, H. U. Frey, D. H. Fairfield, J. A. Slavin, H. Vanhamäki, H. Uchino, R. Fujii, Y. Miyoshi, and S. Machida
- Published
- 2016
- Full Text
- View/download PDF
39. The Space Physics Environment Data Analysis System (SPEDAS)
- Author
-
V. Angelopoulos, P. Cruce, A. Drozdov, E. W. Grimes, N. Hatzigeorgiu, D. A. King, D. Larson, J. W. Lewis, J. M. McTiernan, D. A. Roberts, C. L. Russell, T. Hori, Y. Kasahara, A. Kumamoto, A. Matsuoka, Y. Miyashita, Y. Miyoshi, I. Shinohara, M. Teramoto, J. B. Faden, A. J. Halford, M. McCarthy, R. M. Millan, J. G. Sample, D. M. Smith, L. A. Woodger, A. Masson, A. A. Narock, K. Asamura, T. F. Chang, C.-Y. Chiang, Y. Kazama, K. Keika, S. Matsuda, T. Segawa, K. Seki, M. Shoji, S. W. Y. Tam, N. Umemura, B.-J. Wang, S.-Y. Wang, R. Redmon, J. V. Rodriguez, H. J. Singer, J. Vandegriff, S. Abe, M. Nose, A. Shinbori, Y.-M. Tanaka, S. UeNo, L. Andersson, P. Dunn, C. Fowler, J. S. Halekas, T. Hara, Y. Harada, C. O. Lee, R. Lillis, D. L. Mitchell, M. R. Argall, K. Bromund, J. L. Burch, I. J. Cohen, M. Galloy, B. Giles, A. N. Jaynes, O. Le Contel, M. Oka, T. D. Phan, B. M. Walsh, J. Westlake, F. D. Wilder, S. D. Bale, R. Livi, M. Pulupa, P. Whittlesey, A. DeWolfe, B. Harter, E. Lucas, U. Auster, J. W. Bonnell, C. M. Cully, E. Donovan, R. E. Ergun, H. U. Frey, B. Jackel, A. Keiling, H. Korth, J. P. McFadden, Y. Nishimura, F. Plaschke, P. Robert, D. L. Turner, J. M. Weygand, R. M. Candey, R. C. Johnson, T. Kovalick, M. H. Liu, R. E. McGuire, A. Breneman, K. Kersten, and P. Schroeder
- Published
- 2019
- Full Text
- View/download PDF
40. Temporal and Spatial Correspondence of Pc1/EMIC Waves and Relativistic Electron Precipitations Observed With Ground‐Based Multi‐Instruments on 27 March 2017
- Author
-
A. Hirai, F. Tsuchiya, T. Obara, Y. Kasaba, Y. Katoh, H. Misawa, K. Shiokawa, Y. Miyoshi, S. Kurita, S. Matsuda, M. Connors, T. Nagatsuma, K. Sakaguchi, Y. Kasahara, A. Kumamoto, A. Matsuoka, M. Shoji, I. Shinohara, and J. M. Albert
- Published
- 2018
- Full Text
- View/download PDF
41. Rapid Loss of Relativistic Electrons by EMIC Waves in the Outer Radiation Belt Observed by Arase, Van Allen Probes, and the PWING Ground Stations
- Author
-
S. Kurita, Y. Miyoshi, K. Shiokawa, N. Higashio, T. Mitani, T. Takashima, A. Matsuoka, I. Shinohara, C. A. Kletzing, J. B. Blake, S. G. Claudepierre, M. Connors, S. Oyama, T. Nagatsuma, K. Sakaguchi, D. Baishev, and Y. Otsuka
- Published
- 2018
- Full Text
- View/download PDF
42. Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A
- Author
-
M. Nosé, A. Matsuoka, A. Kumamoto, Y. Kasahara, J. Goldstein, M. Teramoto, F. Tsuchiya, S. Matsuda, M. Shoji, S. Imajo, S. Oimatsu, K. Yamamoto, Y. Obana, R. Nomura, A. Fujimoto, I. Shinohara, Y. Miyoshi, W. S. Kurth, C. A. Kletzing, C. W. Smith, and R. J. MacDowall
- Published
- 2018
- Full Text
- View/download PDF
43. Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals
- Author
-
David G. Sibeck, R. Allen, H. Aryan, D. Bodewits, P. Brandt, G. Branduardi-Raymont, G. Brown, J. A. Carter, Y. M. Collado-Vega, M. R. Collier, H. K. Connor, T. E. Cravens, Y. Ezoe, M.-C. Fok, M. Galeazzi, O. Gutynska, M. Holmström, S.-Y. Hsieh, K. Ishikawa, D. Koutroumpa, K. D. Kuntz, M. Leutenegger, Y. Miyoshi, F. S. Porter, M. E. Purucker, A. M. Read, J. Raeder, I. P. Robertson, A. A. Samsonov, S. Sembay, S. L. Snowden, N. E. Thomas, R. von Steiger, B. M. Walsh, and S. Wing
- Published
- 2018
- Full Text
- View/download PDF
44. Longitudinal fiber parameter measurements of two-mode fiber links by using OTDR.
- Author
-
M. Ohashi, Hirokazu Kubota, Y. Miyoshi, Ryo Maruyama, and N. Kuwaki
- Published
- 2014
- Full Text
- View/download PDF
45. Observation of Source Plasma and Field Variations of a Substorm Brightening Aurora at L ∼ 6 by a Ground‐Based Camera and the Arase Satellite on 12 October 2017
- Author
-
L. Chen, K. Shiokawa, Y. Miyoshi, S. Oyama, C.‐W. Jun, Y. Ogawa, K. Hosokawa, Y. Inaba, Y. Kazama, S. Y. Wang, S. W. Y. Tam, T. F. Chang, B. J. Wang, K. Asamura, S. Kasahara, S. Yokota, T. Hori, K. Keika, Y. Kasaba, A. Kumamoto, F. Tsuchiya, M. Shoji, Y. Kasahara, A. Matsuoka, I. Shinohara, S. Imajo, S. Nakamura, and M. Kitahara
- Subjects
Geophysics ,Space and Planetary Science - Published
- 2022
- Full Text
- View/download PDF
46. The RAM-SCB model and its applications to advance space weather forecasting
- Author
-
V.K. Jordanova, S.K. Morley, M.A. Engel, H.C. Godinez, K. Yakymenko, M.G. Henderson, Y. Yu, and Y. Miyoshi
- Subjects
Atmospheric Science ,Geophysics ,Space and Planetary Science ,Aerospace Engineering ,General Earth and Planetary Sciences ,Astronomy and Astrophysics - Published
- 2022
- Full Text
- View/download PDF
47. A Calibration Method of Short‐Time Waveform Signals Passed Through Linear Time‐Invariant Systems: 1. Methodology and Simple Examples
- Author
-
M. Kitahara, S. Matsuda, Y. Katoh, H. Kojima, Y. Kasahara, Y. Miyoshi, S. Nakamura, and M. Hikishima
- Subjects
General Earth and Planetary Sciences ,Electrical and Electronic Engineering ,Condensed Matter Physics - Published
- 2022
- Full Text
- View/download PDF
48. Global scaling of the heat transport in fusion plasmas
- Author
-
Sara Moradi, Johan Anderson, Michele Romanelli, Hyun-Tae Kim, JET contributors, X. Litaudon, S. Abduallev, M. Abhangi, P. Abreu, M. Afzal, K. M. Aggarwal, T. Ahlgren, J. H. Ahn, L. Aho-Mantila, N. Aiba, M. Airila, R. Albanese, V. Aldred, D. Alegre, E. Alessi, P. Aleynikov, A. Alfier, A. Alkseev, M. Allinson, B. Alper, E. Alves, G. Ambrosino, R. Ambrosino, L. Amicucci, V. Amosov, E. Andersson Sundén, M. Angelone, M. Anghel, C. Angioni, L. Appel, C. Appelbee, P. Arena, M. Ariola, H. Arnichand, S. Arshad, A. Ash, N. Ashikawa, V. Aslanyan, O. Asunta, F. Auriemma, Y. Austin, L. Avotina, M. D. Axton, C. Ayres, M. Bacharis, A. Baciero, D. Baião, S. Bailey, A. Baker, I. Balboa, M. Balden, N. Balshaw, R. Bament, J. W. Banks, Y. F. Baranov, M. A. Barnard, D. Barnes, M. Barnes, R. Barnsley, A. Baron Wiechec, L. Barrera Orte, M. Baruzzo, V. Basiuk, M. Bassan, R. Bastow, A. Batista, P. Batistoni, R. Baughan, B. Bauvir, L. Baylor, B. Bazylev, J. Beal, P. S. Beaumont, M. Beckers, B. Beckett, A. Becoulet, N. Bekris, M. Beldishevski, K. Bell, F. Belli, M. Bellinger, É. Belonohy, N. Ben Ayed, N. A. Benterman, H. Bergsȧker, J. Bernardo, M. Bernert, M. Berry, L. Bertalot, C. Besliu, M. Beurskens, B. Bieg, J. Bielecki, T. Biewer, M. Bigi, P. Bìlkovà, F. Binda, A. Bisoffi, J. P. S. Bizarro, C. Björkas, J. Blackburn, K. Blackman, T. R. Blackman, P. Blanchard, P. Blatchford, V. Bobkov, A. Boboc, G. Bodnàr, O. Bogar, I. Bolshakova, T. Bolzonella, N. Bonanomi, F. Bonelli, J. Boom, J. Booth, D. Borba, D. Borodin, I. Borodkina, A. Botrugno, C. Bottereau, P. Boulting, C. Bourdelle, M. Bowden, C. Bower, C. Bowman, T. Boyce, C. Boyd, H. J. Boyer, J. M. A. Bradshaw, V. Braic, R. Bravanec, B. Breizman, S. Bremond, P. D. Brennan, S. Breton, A. Brett, S. Brezinsek, M. D. J. Bright, M. Brix, W. Broeckx, M. Brombin, A. Brosawski, D. P. D. Brown, M. Brown, E. Bruno, J. Bucalossi, J. Buch, J. Buchanan, M. A. Buckley, R. Budny, H. Bufferand, M. Bulman, N. Bulmer, P. Bunting, P. Buratti, A. Burckhart, A. Buscarino, A. Busse, N. K. Butler, I. Bykov, J. Byrne, P. Cahyna, G. Calabrò, I. Calvo, Y. Camenen, P. Camp, D. C. Campling, J. Cane, B. Cannas, A. J. Capel, P. J. Card, A. Cardinali, P. Carman, M. Carr, D. Carralero, L. Carraro, B. B. Carvalho, I. Carvalho, P. Carvalho, F. J. Casson, C. Castaldo, N. Catarino, J. Caumont, F. Causa, R. Cavazzana, K. Cave-Ayland, M. Cavinato, M. Cecconello, S. Ceccuzzi, E. Cecil, A. Cenedese, R. Cesario, C. D. Challis, M. Chandler, D. Chandra, C. S. Chang, A. Chankin, I. T. Chapman, S. C. Chapman, M. Chernyshova, G. Chitarin, G. Ciraolo, D. Ciric, J. Citrin, F. Clairet, E. Clark, M. Clark, R. Clarkson, D. Clatworthy, C. Clements, M. Cleverly, J. P. Coad, P. A. Coates, A. Cobalt, V. Coccorese, V. Cocilovo, S. Coda, R. Coelho, J. W. Coenen, I. Coffey, L. Colas, S. Collins, D. Conka, S. Conroy, N. Conway, D. Coombs, D. Cooper, S. R. Cooper, C. Corradino, Y. Corre, G. Corrigan, S. Cortes, D. Coster, A. S. Couchman, M. P. Cox, T. Craciunescu, S. Cramp, R. Craven, F. Crisanti, G. Croci, D. Croft, K. Crombé, R. Crowe, N. Cruz, G. Cseh, A. Cufar, A. Cullen, M. Curuia, A. Czarnecka, H. Dabirikhah, P. Dalgliesh, S. Dalley, J. Dankowski, D. Darrow, O. Davies, W. Davis, C. Day, I. E. Day, M. De Bock, A. de Castro, E. de la Cal, E. de la Luna, G. De Masi, J. L. de Pablos, G. De Temmerman, G. De Tommasi, P. de Vries, K. Deakin, J. Deane, F. Degli Agostini, R. Dejarnac, E. Delabie, N. den Harder, R. O. Dendy, J. Denis, P. Denner, S. Devaux, P. Devynck, F. Di Maio, A. Di Siena, C. Di Troia, P. Dinca, R. Dinca, B. Ding, T. Dittmar, H. Doerk, R. P. Doerner, T. Donné, S. E. Dorling, S. Dormido-Canto, S. Doswon, D. Douai, P. T. Doyle, A. Drenik, P. Drewelow, P. Drews, Ph. Duckworth, R. Dumont, P. Dumortier, D. Dunai, M. Dunne, I. Duran, F. Durodié, P. Dutta, B. P. Duval, R. Dux, K. Dylst, N. Dzysiuk, P. V. Edappala, J. Edmond, A. M. Edwards, J. Edwards, Th. Eich, A. Ekedahl, R. El-Jorf, C. G. Elsmore, M. Enachescu, G. Ericsson, F. Eriksson, J. Eriksson, L. G. Eriksson, B. Esposito, S. Esquembri, H. G. Esser, D. Esteve, B. Evans, G. E. Evans, G. Evison, G. D. Ewart, D. Fagan, M. Faitsch, D. Falie, A. Fanni, A. Fasoli, J. M. Faustin, N. Fawlk, L. Fazendeiro, N. Fedorczak, R. C. Felton, K. Fenton, A. Fernades, H. Fernandes, J. Ferreira, J. A. Fessey, O. Février, O. Ficker, A. Field, S. Fietz, A. Figueiredo, J. Figueiredo, A. Fil, P. Finburg, M. Firdaouss, U. Fischer, L. Fittill, M. Fitzgerald, D. Flammini, J. Flanagan, C. Fleming, K. Flinders, N. Fonnesu, J. M. Fontdecaba, A. Formisano, L. Forsythe, L. Fortuna, E. Fortuna-Zalesna, M. Fortune, S. Foster, T. Franke, T. Franklin, M. Frasca, L. Frassinetti, M. Freisinger, R. Fresa, D. Frigione, V. Fuchs, D. Fuller, S. Futatani, J. Fyvie, K. Gàl, D. Galassi, K. Galazka, J. Galdon-Quiroga, J. Gallagher, D. Gallart, R. Galvão, X. Gao, Y. Gao, J. Garcia, A. Garcia-Carrasco, M. Garca-Munoz, J.-L. Gardarein, L. Garzotti, P. Gaudio, E. Gauthier, D. F. Gear, S. J. Gee, B. Geiger, M. Gelfusa, S. Gerasimov, G. Gervasini, M. Gethins, Z. Ghani, M. Ghate, M. Gherendi, J. C. Giacalone, L. Giacomelli, C. S. Gibson, T. Giegerich, C. Gil, L. Gil, S. Gilligan, D. Gin, E. Giovannozzi, J. B. Girardo, C. Giroud, G. Giruzzi, S. Glöggler, J. Godwin, J. Goff, P. Gohil, V. Goloborod'ko, R. Gomes, B. Goncalves, M. Goniche, M. Goodliffe, A. Goodyear, G. Gorini, M. Gosk, R. Goulding, A. Goussarov, R. Gowland, B. Graham, M. E. Graham, J. P. Graves, N. Grazier, P. Grazier, N. R. Green, H. Greuner, B. Grierson, F. S. Griph, C. Grisolia, D. Grist, M. Groth, R. Grove, C. N. Grundy, J. Grzonka, D. Guard, C. Guérard, C. Guillemaut, R. Guirlet, C. Gurl, H. H. Utoh, L. J. Hackett, S. Hacquin, A. Hagar, R. Hager, A. Hakola, M. Halitovs, S. J. Hall, S. P. Hallworth Cook, C. Hamlyn-Harris, K. Hammond, C. Harrington, J. Harrison, D. Harting, F. Hasenbeck, Y. Hatano, D. R. Hatch, T. D. V. Haupt, J. Hawes, N. C. Hawkes, J. Hawkins, P. Hawkins, P. W. Haydon, N. Hayter, S. Hazel, P. J. L. Heesterman, K. Heinola, C. Hellesen, T. Hellsten, W. Helou, O. N. Hemming, T. C. Hender, M. Henderson, S. S. Henderson, R. Henriques, D. Hepple, G. Hermon, P. Hertout, C. Hidalgo, E. G. Highcock, M. Hill, J. Hillairet, J. Hillesheim, D. Hillis, K. Hizanidis, A. Hjalmarsson, J. Hobirk, E. Hodille, C. H. A. Hogben, G. M. D. Hogeweij, A. Hollingsworth, S. Hollis, D. A. Homfray, J. Horàcek, G. Hornung, A. R. Horton, L. D. Horton, L. Horvath, S. P. Hotchin, M. R. Hough, P. J. Howarth, A. Hubbard, A. Huber, V. Huber, T. M. Huddleston, M. Hughes, G. T. A. Huijsmans, C. L. Hunter, P. Huynh, A. M. Hynes, D. Iglesias, N. Imazawa, F. Imbeaux, M. Imrìŝek, M. Incelli, P. Innocente, M. Irishkin, I. Ivanova-Stanik, S. Jachmich, A. S. Jacobsen, P. Jacquet, J. Jansons, A. Jardin, A. Järvinen, F. Jaulmes, S. Jednoróq, I. Jenkins, C. Jeong, I. Jepu, E. Joffrin, R. Johnson, T. Johnson, Jane Johnston, L. Joita, G. Jones, T. T. C. Jones, K. K. Hoshino, A. Kallenbach, K. Kamiya, J. Kaniewski, A. Kantor, A. Kappatou, J. Karhunen, D. Karkinsky, I. Karnowska, M. Kaufman, G. Kaveney, Y. Kazakov, V. Kazantzidis, D. L. Keeling, T. Keenan, J. Keep, M. Kempenaars, C. Kennedy, D. Kenny, J. Kent, O. N. Kent, E. Khilkevich, H. T. Kim, H. S. Kim, A. Kinch, C. King, D. King, R. F. King, D. J. Kinna, V. Kiptily, A. Kirk, K. Kirov, A. Kirschner, G. Kizane, C. Klepper, A. Klix, P. Knight, S. J. Knipe, S. Knott, T. Kobuchi, F. Köchl, G. Kocsis, I. Kodeli, L. Kogan, D. Kogut, S. Koivuranta, Y. Kominis, M. Köppen, B. Kos, T. Koskela, H. R. Koslowski, M. Koubiti, M. Kovari, E. Kowalska-Strzeciwilk, A. Krasilnikov, V. Krasilnikov, N. Krawczyk, M. Kresina, K. Krieger, A. Krivska, U. Kruezi, I. Ksiazek, A. Kukushkin, A. Kundu, T. Kurki-Suonio, S. Kwak, R. Kwiatkowski, O. J. Kwon, L. Laguardia, A. Lahtinen, A. Laing, N. Lam, H. T. Lambertz, C. Lane, P. T. Lang, S. Lanthaler, J. Lapins, A. Lasa, J. R. Last, E. Laszynska, R. Lawless, A. Lawson, K. D. Lawson, A. Lazaros, E. Lazzaro, J. Leddy, S. Lee, X. Lefebvre, H. J. Leggate, J. Lehmann, M. Lehnen, D. Leichtle, P. Leichuer, F. Leipold, I. Lengar, M. Lennholm, E. Lerche, A. Lescinskis, S. Lesnoj, E. Letellier, M. Leyland, W. Leysen, L. Li, Y. Liang, J. Likonen, J. Linke, Ch. Linsmeier, B. Lipschultz, G. Liu, Y. Liu, V. P. Lo Schiavo, T. Loarer, A. Loarte, R. C. Lobel, B. Lomanowski, P. J. Lomas, J. Lönnroth, J. M. López, J. López-Razola, R. Lorenzini, U. Losada, J. J. Lovell, A. B. Loving, C. Lowry, T. Luce, R. M. A. Lucock, A. Lukin, C. Luna, M. Lungaroni, C. P. Lungu, M. Lungu, A. Lunniss, I. Lupelli, A. Lyssoivan, N. Macdonald, P. Macheta, K. Maczewa, B. Magesh, P. Maget, C. Maggi, H. Maier, J. Mailloux, T. Makkonen, R. Makwana, A. Malaquias, A. Malizia, P. Manas, A. Manning, M. E. Manso, P. Mantica, M. Mantsinen, A. Manzanares, Ph. Maquet, Y. Marandet, N. Marcenko, C. Marchetto, O. Marchuk, M. Marinelli, M. Marinucci, T. Markovic, D. Marocco, L. Marot, C. A. Marren, R. Marshal, A. Martin, Y. Martin, A. Martín de Aguilera, F. J. Martínez, J. R. Martín-Solís, Y. Martynova, S. Maruyama, A. Masiello, M. Maslov, S. Matejcik, M. Mattei, G. F. Matthews, F. Maviglia, M. Mayer, M. L. Mayoral, T. May-Smith, D. Mazon, C. Mazzotta, R. McAdams, P. J. McCarthy, K. G. McClements, O. McCormack, P. A. McCullen, D. McDonald, S. McIntosh, R. McKean, J. McKehon, R. C. Meadows, A. Meakins, F. Medina, M. Medland, S. Medley, S. Meigh, A. G. Meigs, G. Meisl, S. Meitner, L. Meneses, S. Menmuir, K. Mergia, I. R. Merrigan, Ph. Mertens, S. Meshchaninov, A. Messiaen, H. Meyer, S. Mianowski, R. Michling, D. Middleton-Gear, J. Miettunen, F. Militello, E. Militello-Asp, G. Miloshevsky, F. Mink, S. Minucci, Y. Miyoshi, J. Mlynàr, D. Molina, I. Monakhov, M. Moneti, R. Mooney, S. Moradi, S. Mordijck, L. Moreira, R. Moreno, F. Moro, A. W. Morris, J. Morris, L. Moser, S. Mosher, D. Moulton, A. Murari, A. Muraro, S. Murphy, N. N. Asakura, Y. S. Na, F. Nabais, R. Naish, T. Nakano, E. Nardon, V. Naulin, M. F. F. Nave, I. Nedzelski, G. Nemtsev, F. Nespoli, A. Neto, R. Neu, V. S. Neverov, M. Newman, K. J. Nicholls, T. Nicolas, A. H. Nielsen, P. Nielsen, E. Nilsson, D. Nishijima, C. Noble, M. Nocente, D. Nodwell, K. Nordlund, H. Nordman, R. Nouailletas, I. Nunes, M. Oberkofler, T. Odupitan, M. T. Ogawa, T. O'Gorman, M. Okabayashi, R. Olney, O. Omolayo, M. O'Mullane, J. Ongena, F. Orsitto, J. Orszagh, B. I. Oswuigwe, R. Otin, A. Owen, R. Paccagnella, N. Pace, D. Pacella, L. W. Packer, A. Page, E. Pajuste, S. Palazzo, S. Pamela, S. Panja, P. Papp, R. Paprok, V. Parail, M. Park, F. Parra Diaz, M. Parsons, R. Pasqualotto, A. Patel, S. Pathak, D. Paton, H. Patten, A. Pau, E. Pawelec, C. Paz Soldan, A. Peackoc, I. J. Pearson, S.-P. Pehkonen, E. Peluso, C. Penot, A. Pereira, R. Pereira, P. P. Pereira Puglia, C. Perez von Thun, S. Peruzzo, S. Peschanyi, M. Peterka, P. Petersson, G. Petravich, A. Petre, N. Petrella, V. Petrzilka, Y. Peysson, D. Pfefferlé, V. Philipps, M. Pillon, G. Pintsuk, P. Piovesan, A. Pires dos Reis, L. Piron, A. Pironti, F. Pisano, R. Pitts, F. Pizzo, V. Plyusnin, N. Pomaro, O. G. Pompilian, P. J. Pool, S. Popovichev, M. T. Porfiri, C. Porosnicu, M. Porton, G. Possnert, S. Potzel, T. Powell, J. Pozzi, V. Prajapati, R. Prakash, G. Prestopino, D. Price, M. Price, R. Price, P. Prior, R. Proudfoot, G. Pucella, P. Puglia, M. E. Puiatti, D. Pulley, K. Purahoo, Th. Pütterich, E. Rachlew, M. Rack, R. Ragona, M. S. J. Rainford, A. Rakha, G. Ramogida, S. Ranjan, C. J. Rapson, J. J. Rasmussen, K. Rathod, G. Rattà, S. Ratynskaia, G. Ravera, C. Rayner, M. Rebai, D. Reece, A. Reed, D. Réfy, B. Regan, J. Regana, M. Reich, N. Reid, F. Reimold, M. Reinhart, M. Reinke, D. Reiser, D. Rendell, C. Reux, S. D. A. Reyes Cortes, S. Reynolds, V. Riccardo, N. Richardson, K. Riddle, D. Rigamonti, F. G. Rimini, J. Risner, M. Riva, C. Roach, R. J. Robins, S. A. Robinson, T. Robinson, D. W. Robson, R. Roccella, R. Rodionov, P. Rodrigues, J. Rodriguez, V. Rohde, F. Romanelli, M. Romanelli, S. Romanelli, J. Romazanov, S. Rowe, M. Rubel, G. Rubinacci, G. Rubino, L. Ruchko, M. Ruiz, C. Ruset, J. Rzadkiewicz, S. Saarelma, R. Sabot, E. Safi, P. Sagar, G. Saibene, F. Saint-Laurent, M. Salewski, A. Salmi, R. Salmon, F. Salzedas, D. Samaddar, U. Samm, D. Sandiford, P. Santa, M. I. K. Santala, B. Santos, A. Santucci, F. Sartori, R. Sartori, O. Sauter, R. Scannell, T. Schlummer, K. Schmid, V. Schmidt, S. Schmuck, M. Schneider, K. Schöpf, D. Schwörer, S. D. Scott, G. Sergienko, M. Sertoli, A. Shabbir, S. E. Sharapov, A. Shaw, R. Shaw, H. Sheikh, A. Shepherd, A. Shevelev, A. Shumack, G. Sias, M. Sibbald, B. Sieglin, S. Silburn, A. Silva, C. Silva, P. A. Simmons, J. Simpson, J. Simpson-Hutchinson, A. Sinha, S. K. Sipilä, A. C. C. Sips, P. Sirén, A. Sirinelli, H. Sjöstrand, M. Skiba, R. Skilton, K. Slabkowska, B. Slade, N. Smith, P. G. Smith, R. Smith, T. J. Smith, M. Smithies, L. Snoj, S. Soare, E. R. Solano, A. Somers, C. Sommariva, P. Sonato, A. Sopplesa, J. Sousa, C. Sozzi, S. Spagnolo, T. Spelzini, F. Spineanu, G. Stables, I. Stamatelatos, M. F. Stamp, P. Staniec, G. Stankunas, C. Stan-Sion, M. J. Stead, E. Stefanikova, I. Stepanov, A. V. Stephen, M. Stephen, A. Stevens, B. D. Stevens, J. Strachan, P. Strand, H. R. Strauss, P. Ström, G. Stubbs, W. Studholme, F. Subba, H. P. Summers, J. Svensson, L. Swiderski, T. Szabolics, M. Szawlowski, G. Szepesi, T. T. Suzuki, B. Tàl, T. Tala, A. R. Talbot, S. Talebzadeh, C. Taliercio, P. Tamain, C. Tame, W. Tang, M. Tardocchi, L. Taroni, D. Taylor, K. A. Taylor, D. Tegnered, G. Telesca, N. Teplova, D. Terranova, D. Testa, E. Tholerus, J. Thomas, J. D. Thomas, P. Thomas, A. Thompson, C.-A. Thompson, V. K. Thompson, L. Thorne, A. Thornton, A. S. Thrysoe, P. A. Tigwell, N. Tipton, I. Tiseanu, H. Tojo, M. Tokitani, P. Tolias, M. Tomes, P. Tonner, M. Towndrow, P. Trimble, M. Tripsky, M. Tsalas, P. Tsavalas, D. Tskhakaya jun, I. Turner, M. M. Turner, M. Turnyanskiy, G. Tvalashvili, S. G. J. Tyrrell, A. Uccello, Z. Ul-Abidin, J. Uljanovs, D. Ulyatt, H. Urano, I. Uytdenhouwen, A. P. Vadgama, D. Valcarcel, M. Valentinuzzi, M. Valisa, P. Vallejos Olivares, M. Valovic, M. Van De Mortel, D. Van Eester, W. Van Renterghem, G. J. van Rooij, J. Varje, S. Varoutis, S. Vartanian, K. Vasava, T. Vasilopoulou, J. Vega, G. Verdoolaege, R. Verhoeven, C. Verona, G. Verona Rinati, E. Veshchev, N. Vianello, J. Vicente, E. Viezzer, S. Villari, F. Villone, P. Vincenzi, I. Vinyar, B. Viola, A. Vitins, Z. Vizvary, M. Vlad, I. Voitsekhovitch, P. Vondràcek, N. Vora, T. Vu, W. W. Pires de Sa, B. Wakeling, C. W. F. Waldon, N. Walkden, M. Walker, R. Walker, M. Walsh, E. Wang, N. Wang, S. Warder, R. J. Warren, J. Waterhouse, N. W. Watkins, C. Watts, T. Wauters, A. Weckmann, J. Weiland, H. Weisen, M. Weiszflog, C. Wellstood, A. T. West, M. R. Wheatley, S. Whetham, A. M. Whitehead, B. D. Whitehead, A. M. Widdowson, S. Wiesen, J. Wilkinson, J. Williams, M. Williams, A. R. Wilson, D. J. Wilson, H. R. Wilson, J. Wilson, M. Wischmeier, G. Withenshaw, A. Withycombe, D. M. Witts, D. Wood, R. Wood, C. Woodley, S. Wray, J. Wright, J. C. Wright, J. Wu, S. Wukitch, A. Wynn, T. Xu, D. Yadikin, W. Yanling, L. Yao, V. Yavorskij, M. G. Yoo, C. Young, D. Young, I. D. Young, R. Young, J. Zacks, R. Zagorski, F. S. Zaitsev, R. Zanino, A. Zarins, K. D. Zastrow, M. Zerbini, W. Zhang, Y. Zhou, E. Zilli, V. Zoita, S. Zoletnik, and I. Zychor
- Subjects
Physics ,QC1-999 - Abstract
A global heat flux model based on a fractional derivative of plasma pressure is proposed for the heat transport in fusion plasmas. The degree of the fractional derivative of the heat flux, α, is defined through the power balance analysis of the steady state. The model was used to obtain the experimental values of α for a large database of the Joint European Torus (JET) carbon-wall as well as ITER like-wall plasmas. The fractional degrees of the electron heat flux are found to be α
- Published
- 2020
- Full Text
- View/download PDF
49. Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012
- Author
-
H. Fujiwara, S. Nozawa, Y. Ogawa, R. Kataoka, Y. Miyoshi, H. Jin, and H. Shinagawa
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Simultaneous measurements of the polar ionosphere with the European Incoherent Scatter (EISCAT) ultra high frequency (UHF) radar at Tromsø and the EISCAT Svalbard radar (ESR) at Longyearbyen were made during 07:00–12:00 UT on 12 March 2012. During the period, the Advanced Composition Explorer (ACE) spacecraft observed changes in the solar wind which were due to the arrival of coronal mass ejection (CME) effects associated with the 10 March M8.4 X-ray event. The solar wind showed two-step variations which caused strong ionospheric heating. First, the arrival of shock structures in the solar wind with enhancements of density and velocity, and a negative interplanetary magnetic field (IMF)-Bz component caused strong ionospheric heating around Longyearbyen; the ion temperature at about 300 km increased from about 1100 to 3400 K over Longyearbyen while that over Tromsø increased from about 1050 to 1200 K. After the passage of the shock structures, the IMF-Bz component showed positive values and the solar wind speed and density also decreased. The second strong ionospheric heating occurred after the IMF-Bz component showed negative values again; the negative values lasted for more than 1.5 h. This solar wind variation caused stronger heating of the ionosphere in the lower latitudes than higher latitudes, suggesting expansion of the auroral oval/heating region to the lower latitude region. This study shows an example of the CME-induced dayside ionospheric heating: a short-duration and very large rise in the ion temperature which was closely related to the polar cap size and polar cap potential variations as a result of interaction between the solar wind and the magnetosphere.
- Published
- 2014
- Full Text
- View/download PDF
50. Development of Coax Compacted Joint Assembly Process for the ITER Central Solenoid
- Author
-
P. Decool, Enrique Gaxiola, Y. Miyoshi, J.P. Smith, D. Everitt, G. Jiolat, Alan Stephens, Clement Nguyen thanh dao, Thierry Schild, Alexandre Torre, Nicolai Martovetsky, and Andrew Bruton
- Subjects
Materials science ,Tokamak ,Busbar ,business.industry ,Mechanical engineering ,Solenoid ,Modular design ,Condensed Matter Physics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Conductor ,law.invention ,Conceptual design ,law ,Magnet ,Soldering ,0103 physical sciences ,Electrical and Electronic Engineering ,010306 general physics ,business - Abstract
The Central Solenoid (CS) is the core element of the ITER magnet system, contributed as in-kind procurement by the US Domestic Agency. Made up of six modular inter-exchangeable module coils, vertically stacked, forming a 15 m high and 4 m outer diameter solenoid, to be inserted inside the central tokamak core, after assembly of the 18 D-shaped Toroidal Field (TF) coils. Each module uses a Nb3Sn conductor internally cooled by circulation of supercritical helium at 4.5 K and supplied, for each module, with a 45 kA current by the way of two vertical leads exiting from the module outer radius. The available space between the CS and TF magnets being very limited, the US DA has developed a compact - so called Coax Joint (CJ) - devoted to connect the respective twelve module leads to the feeders located at top and bottom of the CS via dedicated busbar extensions. The CS coax joint assembly procedure as developed by US DA would make use of CS assembly onsite soldering process, to be executed under supervision of the ITER Organization (IO) in the tokamak assembly hall. In order to mitigate risks related to these soldering activities needed at assembly stage, IO has proposed an alternative assembly process based on indium wires compaction - so called Coax Compacted Joint (CCJ)- and initiated its prototype development and qualification in time. The hereby presented CCJ design solution is based on four copper quadrants, each including an embedded straight Rutherford-type superconductor cable-strip to transport the current. The current is transferred from the lead to the quadrants by the way of compacted indium wires. A steel jacket welded around the joint ensures the mechanical support as well as the needed leak tightness. The paper describes developments made by CEA under IO supervision from the conceptual design to the testing of joints in relevant cryogenic and operative conditions.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.