1. Distribution Locational Marginal Emission for Carbon Alleviation in Distribution Networks: Formulation, Calculation, and Implication
- Author
-
Sang, Linwei, Xu, Yinliang, Sun, Hongbin, Wu, Qiuwei, and Wu, Wenchuan
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
Regulating the proper carbon-aware intervention policy is one of the keys to emission alleviation in the distribution network, whose basis lies in effectively attributing the emission responsibility using emission factors. This paper establishes the distribution locational marginal emission (DLME) to calculate the marginal change of emission from the marginal change of both active and reactive load demand for incentivizing carbon alleviation. It first formulates the day-head distribution network scheduling model based on the second-order cone program (SOCP). The emission propagation and responsibility are analyzed from demand to supply to system emission. Considering the complex and implicit mapping of the SOCP-based scheduling model, the implicit theorem is leveraged to exploit the optimal condition of SOCP. The corresponding SOCP-based implicit derivation approach is proposed to calculate the DLMEs effectively in a model-based way. Comprehensive numerical studies are conducted to verify the superiority of the proposed method by comparing its calculation efficacy to the conventional marginal estimation approach, assessing its effectiveness in carbon alleviation with comparison to the average emission factors, and evaluating its carbon alleviation ability of reactive DLME.
- Published
- 2024