1. Zero-Shot Enhancement of Low-Light Image Based on Retinex Decomposition
- Author
-
Li, Wenchao, Xiong, Bangshu, Ou, Qiaofeng, Long, Xiaoyun, Zhu, Jinhao, Chen, Jiabao, and Wen, Shuyuan
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Graphics - Abstract
Two difficulties here make low-light image enhancement a challenging task; firstly, it needs to consider not only luminance restoration but also image contrast, image denoising and color distortion issues simultaneously. Second, the effectiveness of existing low-light enhancement methods depends on paired or unpaired training data with poor generalization performance. To solve these difficult problems, we propose in this paper a new learning-based Retinex decomposition of zero-shot low-light enhancement method, called ZERRINNet. To this end, we first designed the N-Net network, together with the noise loss term, to be used for denoising the original low-light image by estimating the noise of the low-light image. Moreover, RI-Net is used to estimate the reflection component and illumination component, and in order to solve the color distortion and contrast, we use the texture loss term and segmented smoothing loss to constrain the reflection component and illumination component. Finally, our method is a zero-reference enhancement method that is not affected by the training data of paired and unpaired datasets, so our generalization performance is greatly improved, and in the paper, we have effectively validated it with a homemade real-life low-light dataset and additionally with advanced vision tasks, such as face detection, target recognition, and instance segmentation. We conducted comparative experiments on a large number of public datasets and the results show that the performance of our method is competitive compared to the current state-of-the-art methods. The code is available at:https://github.com/liwenchao0615/ZERRINNet, Comment: 16 pages, 66 figures, TCSVT
- Published
- 2023