1. Inelastic Parametric Analysis of Seismic Responses of Multistorey Bidirectional Eccentric Structure
- Author
-
Yu-ping Kuang, Xin-liang Jiang, and Nan Jiang
- Subjects
Physics ,QC1-999 - Abstract
This paper conducts a parametric study on the seismic response of multistorey bidirectional eccentric structures from elastic stage to inelastic stage. Based on a simplified multistorey bidirectional eccentric model composed of bidirectional lateral load-resisting members, a general law is proposed for three-stage natural frequency variation behaviour from elastic stage to inelastic stage of eccentric frame structures with different layers. Different simplification treatments are conducted on each stage and the three stable parameter analysis stages are defined. The corresponding dynamic stiffness matrices and motion equations in different loading stages are derived. On this basis, a parametric analysis of seismic response of a three-storey bidirectional regular eccentric structure from elastic stage to inelastic stage is conducted. Effects of the uncoupled torsion to lateral frequency ratios (Ω) and bidirectional eccentricities on the seismic responses are investigated. The results reveal that as Ω increases, translational displacement in the load direction first decreases and then increases; meanwhile, the displacement perpendicular to load direction and torsion displacement first rise and then decrease sharply. When Ω=1.1, the coupling effect between the translation in the load direction and the torsion is at its strongest condition. Increasing the eccentricities leads to a decrease in the displacement in the load direction as well as an increase in the displacement perpendicular to load direction and torsion displacement. Variation regularity of inelastic seismic response is remarkably different from that in elastic stage. The lateral-torsional coupling effect of the bidirectional eccentric structure is closely related to both the period ratio and the bidirectional eccentricities.
- Published
- 2018
- Full Text
- View/download PDF