1. BAZAM: A Blockchain-Assisted Zero-Trust Authentication in Multi-UAV Wireless Networks
- Author
-
Xie, Mingyue, Chang, Zheng, Alfarraj, Osama, Yu, Keping, Chen, Tao, and Li, Hongwei
- Subjects
Computer Science - Cryptography and Security - Abstract
Unmanned aerial vehicles (UAVs) are vulnerable to interception and attacks when operated remotely without a unified and efficient identity authentication. Meanwhile, the openness of wireless communication environments potentially leads to data leakage and system paralysis. However, conventional authentication schemes in the UAV network are system-centric, failing to adapt to the diversity of UAVs identities and access, resulting in changes in network environments and connection statuses. Additionally, UAVs are not subjected to periodic identity compliance checks once authenticated, leading to difficulties in controlling access anomalies. Therefore, in this work, we consider a zero-trust framework for UAV network authentication, aiming to achieve UAVs identity authentication through the principle of ``never trust and always verify''. We introduce a blockchain-assisted zero-trust authentication scheme, namely BAZAM, designed for multi-UAV wireless networks. In this scheme, UAVs follow a key generation approach using physical unclonable functions (PUFs), and cryptographic technique helps verify registration and access requests of UAVs. The blockchain is applied to store UAVs authentication information in immutable storage. Through thorough security analysis and extensive evaluation, we demonstrate the effectiveness and efficiency of the proposed BAZAM.
- Published
- 2024