1. Time-dependent proteomics and drug response in expanding cancer cells
- Author
-
Yuting Pan, Ying Xuan, Piliang Hao, Xianzhi Chen, Rong Yan, Chengqian Zhang, Xisong Ke, Yi Qu, and Xue Zhang
- Subjects
Anti-cancer agents ,Drug tolerance ,Time-dependent proteomics ,Cell expansion ,Cell metabolism ,Pentacyclic triterpenoids ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Cancer cell line is commonly used for discovery and development of anti-cancer drugs. It is generally considered that drug response remains constant for a certain cell line due to the identity of genetics thus protein patterns. Here, we demonstrated that cancer cells continued dividing even after reaching confluence, in that the proteomics was changed continuously and dramatically with strong relevance to cell division, cell adhesion and cell metabolism, indicating time-dependent intrinsically reprogramming of cells during expansion. Of note, the inhibition effect of most anti-cancer drugs was strikingly attenuated in culture cells along with cell expansion, with the strongest change at the third day when cells were still expanding. Profiling of an FDA-approved drug library revealed that attenuation of response with cell expansion is common for most drugs, an exception was TAK165 that was a selective inhibitor of mitochondrial respiratory chain complex I. Finally, we screened a panel of natural products and identified four pentacyclic triterpenes as selective inhibitors of cancer cells under prolonged growth. Taken together, our findings underscore that caution should be taken in evaluation of anti-cancer drugs using culture cells, and provide agents selectively targeting overgrowth cancer cells.
- Published
- 2024
- Full Text
- View/download PDF