1. EIAGA-S: Rapid Mapping of Mangroves Using Geospatial Data without Ground Truth Samples
- Author
-
Yuchen Zhao, Shulei Wu, Xianyao Zhang, Hui Luo, Huandong Chen, and Chunhui Song
- Subjects
adaptive genetic algorithm ,population elite individual ,semantic segmentation ,vegetation index ,multi-spectral remote sensing image ,Plant ecology ,QK900-989 - Abstract
Mangrove forests are essential for coastal protection and carbon sequestration, yet accurately mapping their distribution remains challenging due to spectral similarities with other vegetation. This study introduces a novel unsupervised learning method, the Elite Individual Adaptive Genetic Algorithm-Semantic Inference (EIAGA-S), designed for the high-precision semantic segmentation of mangrove forests using remote sensing images without the need for ground truth samples. EIAGA-S integrates an adaptive Genetic Algorithm with an elite individual’s evolution strategy, optimizing the segmentation process. A new Mangrove Enhanced Vegetation Index (MEVI) was developed to better distinguish mangroves from other vegetation types within the spectral feature space. EIAGA-S constructs segmentation rules through iterative rule stacking and enhances boundary information using connected component analysis. The method was evaluated using a multi-source remote sensing dataset covering the Hainan Dongzhai Port Mangrove Nature Reserve in China. The experimental results demonstrate that EIAGA-S achieves a superior overall mIoU (mean intersection over union) of 0.92 and an F1 score of 0.923, outperforming traditional models such as K-means and SVM (Support Vector Machine). A detailed boundary analysis confirms EIAGA-S’s ability to extract fine-grained mangrove patches. The segmentation includes five categories: mangrove canopy, other terrestrial vegetation, buildings and streets, bare land, and water bodies. The proposed EIAGA-S model offers a precise and data-efficient solution for mangrove semantic mapping while eliminating the dependency on extensive field sampling and labeled data. Additionally, the MEVI index facilitates large-scale mangrove monitoring. In future work, EIAGA-S can be integrated with long-term remote sensing data to analyze mangrove forest dynamics under climate change conditions. This innovative approach has potential applications in rapid forest change detection, environmental protection, and beyond.
- Published
- 2024
- Full Text
- View/download PDF