27 results on '"Xiang QJ"'
Search Results
2. Metagenomic study reveals hidden relationships among fungal diversity, variation of plant disease, and genetic distance in Cornus florida (Cornaceae).
- Author
-
Pais A, Ristaino J, Whetten R, and Xiang QJ
- Abstract
Introduction: Understanding patterns of plant-microbe interactions across plant species and populations is a critical yet poorly characterized aspect in the field of plant pathology. Microbial DNA sequences present as contaminants in omics data of plants obtained using next-generation sequencing methods provide a valuable source to explore the relationships among endophytic microbial diversity, disease and genetic differentiation of host plants, and environmental variation, but few such studies have been conducted. The flowering dogwood tree ( Cornus florida L.), an ecologically important species in North America, is threatened by powdery mildew and dogwood anthracnose diseases, and knowledge of the microbial diversity harbored within genetically and environmental distinct populations of this species remains largely unknown., Methods: We conducted a metagenomics study utilizing the sequences of RAD-tag/genotype-by-sequence libraries from leaf tissues of C. florida to examine such host-fungus interactions across the dogwood's US range. We performed various combinations of alignments to both host and pathogen genomes to obtain filtered sets sequences for metagenomics analysis. Taxonomic assignments were determined on each filtered set of sequences, followed by estimation of microbial diversity and correlation to environment and host-genetic variation., Results: Our data showed that microbial community composition significantly differed between visually healthy and diseased sites. Several microbial taxa known to interact with dogwood were identified from these sequences. We found no correlation between microbial diversity and relative abundances of sequences aligning to draft genomes of either pathogen causing powdery mildew or dogwood anthracnose. We found a significant relationship between differences of fungal communities and geographic distances of plant populations, suggesting roles of environments in shaping fungal communities in leaf tissues. Significant correlations between the genetic differentiation of plant samples and fungal community dissimilarity (beta diversity) were also observed in certain sets of our analyses-suggesting the possibility of a relationship between microbial community composition and plant genetic distance. This relationship persisted in significance even after controlling for significant effects of geographic-bioclimatic variation of microbial diversity., Discussion: Our results suggest that both genetics and the environment play a significant role in shaping foliar fungal communities. Our findings underscore the power of leveraging hidden microbial sequences within datasets originally collected for plant genetic studies to understand plant-pathogen interactions., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2024 Pais, Ristaino, Whetten and Xiang.)
- Published
- 2024
- Full Text
- View/download PDF
3. Foliar endophyte diversity in Eastern Asian-Eastern North American disjunct tree species - influences of host identity, environment, phylogeny, and geographic isolation.
- Author
-
Zhou W, Shi W, Soltis PS, Soltis DE, and Xiang QJ
- Abstract
Introduction: The well-known eastern Asian (EA) and eastern North American (ENA) floristic disjunction provides a unique system for biogeographic and evolutionary studies. Despite considerable interest in the disjunction, few studies have investigated the patterns and their underlying drivers of allopatric divergence in sister species or lineages isolated in the two areas. Endophyte diversity and assembly in disjunct sister taxa, as an ecological trait, may have played an important role in the processes of allopatric evolution, but no studies have examined endophytes in these lineages. Here we compared foliar endophytic fungi and bacteria-archaea (FEF and FEB) in 17 EA-ENA disjunct species or clade pairs from genera representing conifers and 10 orders of five major groups of angiosperms and 23 species of Cornus from EA and North America., Methods: Metagenomic sequencing of fungal ITS and bacterial-archaeal 16S rDNA was used to capture the foliar endophytic communities. Alpha and beta diversity of fungi and bacteria were compared at multiple scales and dimensions to gain insights into the relative roles of historical geographic isolation, host identity, phylogeny, and environment from samples at different sites in shaping endophytic diversity patterns., Results: We found that beta diversity of endophytes varied greatly among plant individuals within species and between species among genera at the same sampling site, and among three sampling sites, but little variation between region-of-origin of all plant species (EA vs ENA) and between EA-ENA disjunct counterparts within genera. Various numbers of indicator fungal species differing in abundance were identified for each plant genus and Cornus species. An overall significant correlation between endophyte community dissimilarity and phylogenetic distance of plants was detected among the disjunct genera but not among species of Cornus . However, significant correlations between beta diversities at different taxonomic scales of endophytes and phylogenetic distances of Cornus species were observed., Discussion: Our results suggest important roles of host identity and environment (sampling sites), and a likely minor role of phylogenetic divergence and historical biogeographic isolation in shaping the pattern of foliar endophyte diversity and assembly in the EA-ENA disjunct genera and Cornus . The results lead to a hypothesis that the sister taxa in EA and ENA likely differ in FEF and FEB when growing in native habitats due to differences in local environments, which may potentially drive allopatric divergence of the functional features of species., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2023 Zhou, Shi, Soltis, Soltis and Xiang.)
- Published
- 2023
- Full Text
- View/download PDF
4. Identification of bromelain subfamily proteases encoded in the pineapple genome.
- Author
-
Yow AG, Bostan H, Young R, Valacchi G, Gillitt N, Perkins-Veazie P, Xiang QJ, and Iorizzo M
- Subjects
- Papain, Phylogeny, Proteomics, Bromelains genetics, Bromelains metabolism, Ananas genetics, Ananas metabolism
- Abstract
Papain (aka C1A) family proteases, including bromelain enzymes, are widespread across the plant kingdom and play critical regulatory functions in protein turnover during development. The proteolytic activity exhibited by papain family proteases has led to their increased usage for a wide range of cosmetic, therapeutic, and medicinal purposes. Bromelain enzymes, or bromelains in short, are members of the papain family that are specific to the bromeliad plant family. The only major commercial extraction source of bromelain is pineapple. The importance of C1A family and bromelain subfamily proteases in pineapple development and their increasing economic importance led several researchers to utilize available genomic resources to identify protease-encoding genes in the pineapple genome. To date, studies are lacking in screening bromelain genes for targeted use in applied science studies. In addition, the bromelain genes coding for the enzymes present in commercially available bromelain products have not been identified and their evolutionary origin has remained unclear. Here, using the newly developed MD2 v2 pineapple genome, we aimed to identify bromelain-encoding genes and elucidate their evolutionary origin. Orthologous and phylogenetic analyses of all papain-family proteases encoded in the pineapple genome revealed a single orthogroup (189) and phylogenetic clade (XIII) containing the bromelain subfamily. Duplication mode and synteny analyses provided insight into the origin and expansion of the bromelain subfamily in pineapple. Proteomic analysis identified four bromelain enzymes present in two commercially available bromelain products derived from pineapple stem, corresponding to products of four putative bromelain genes. Gene expression analysis using publicly available transcriptome data showed that 31 papain-family genes identified in this study were up-regulated in specific tissues, including stem, fruit, and floral tissues. Some of these genes had higher expression in earlier developmental stages of different tissues. Similar expression patterns were identified by RT-qPCR analysis with leaf, stem, and fruit. Our results provide a strong foundation for future applicable studies on bromelain, such as transgenic approaches to increase bromelain content in pineapple, development of bromelain-producing bioreactors, and studies that aim to determine the medicinal and/or therapeutic viability of individual bromelain enzymes., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
5. Population Genomic Analyses Suggest a Hybrid Origin, Cryptic Sexuality, and Decay of Genes Regulating Seed Development for the Putatively Strictly Asexual Kingdonia uniflora (Circaeasteraceae, Ranunculales).
- Author
-
Sun Y, Zhang X, Zhang A, Landis JB, Zhang H, Sun H, Xiang QJ, and Wang H
- Subjects
- Humans, Phylogeny, Metagenomics, Sexuality, Genomics, Alleles, Seeds, Reproduction, Asexual genetics, Ranunculales
- Abstract
Asexual lineages are perceived to be short-lived on evolutionary timescales. Hence, reports for exceptional cases of putative 'ancient asexuals' usually raise questions about the persistence of such species. So far, there have been few studies to solve the mystery in plants. The monotypic Kingdonia dating to the early Eocene, contains only K. uniflora that has no known definitive evidence for sexual reproduction nor records for having congeneric sexual species, raising the possibility that the species has persisted under strict asexuality for a long period of time. Here, we analyze whole genome polymorphism and divergence in K. uniflora . Our results show that K. uniflora is characterized by high allelic heterozygosity and elevated π
N / πS ratio, in line with theoretical expectations under asexual evolution. Allele frequency spectrum analysis reveals the origin of asexuality in K. uniflora occurred prior to lineage differentiation of the species. Although divergence within K. uniflora individuals exceeds that between populations, the topologies of the two haplotype trees, however, fail to match each other, indicating long-term asexuality is unlikely to account for the high allele divergence and K. uniflora may have a recent hybrid origin. Phi-test shows a statistical probability of recombination for the conflicting phylogenetic signals revealed by the split network, suggesting K. uniflora engages in undetected sexual reproduction. Detection of elevated genetic differentiation and premature stop codons (in some populations) in genes regulating seed development indicates mutational degradation of sexuality-specific genes in K. uniflora . This study unfolds the origin and persistence mechanism of a plant lineage that has been known to reproduce asexually and presents the genomic consequences of lack of sexuality.- Published
- 2023
- Full Text
- View/download PDF
6. Alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation.
- Author
-
Li Y, Wang B, Xiang QJ, Zhang Q, and Chen G
- Abstract
Alkali metal chlorides have been used as molten salts for further preparing crystalline carbon nitride, but the effect of alkali metal types on the properties of crystalline carbon nitride has not been systematically studied. Therefore, in this paper, a series of crystalline carbon nitride samples doped with different alkali metals were successfully prepared using LiCl-KCl, KCl-NaCl, LiCl-KCl-NaCl and LiCl-NaCl as molten salts: LK-HTCN (Li-K co-doping), KN-HCN (K-Na co-doping), LKN-HTCN (Li-K-Na co-doping) and LN-HTCN (Li-Na co-doping). The experimental results show that KN-HCN contains only the heptazine unit structure, while the other samples contain heptazine and triazine unit structures. Meanwhile, the concentration of the cyano group in the KN-HCN sample structure is significantly higher than that of other samples, which may be related to the fact that there is only a heptazine unit in the structure of the KN-HCN sample. In addition, the loading mode of K and Na ions in the KN-HCN structure is favorable for the migration and separation of photogenerated charges. Thanks to these characteristics, KN-HCN showed excellent photocatalytic ammonia production activity. This study can provide theoretical insight for the development of crystallized carbon nitride.
- Published
- 2022
- Full Text
- View/download PDF
7. Phylogenomics AND biogeography of Castanea (chestnut) and Hamamelis (witch-hazel) - Choosing between RAD-seq and Hyb-Seq approaches.
- Author
-
Zhou W and Xiang QJ
- Subjects
- Biodiversity, Biological Evolution, Phylogeny, Phylogeography, Plants, Fossils, Hamamelis
- Abstract
Hyb-Seq and RAD-seq are well-established high throughput sequencing technologies that have been increasingly used for plant phylogenomic studies. Each method has its own pros and cons. The choice between them is a practical issue for plant systematists studying the evolutionary histories of biodiversity of relatively recent origins. However, few studies have compared the congruence and conflict between results from the two methods within the same group of organisms in plants. In this study, we employed RAD-seq and Hyb-Seq of Angiosperms353 genes in phylogenomic and biogeographic studies of Hamamelis (the witch-hazels) and Castanea (chestnuts), two classic examples exhibiting the well-known eastern Asian (EA) -eastern North American (ENA) disjunct distribution, and compared them side by side. Our results showed congruences in phylogenetic inference and divergence time dating between the two data sets obtained through our customized procedures of library preparation and sequence trimming, although they differed in the number of loci and informative sites, the amount of missing data, and sampling within species. We provide recommendations regarding the selection of the two methods for phylogenomic study at generic level based on fund availability and sampling scale. If funds and time are not constrained, we recommend Hyb-Seq. If funds and time are somewhat limited and sampling is large, we recommend RAD-seq. However, we found greater conflict among gene trees from the RAD-seq data due to the short sequences per locus. Therefore, species tree building and network detecting with the RAD-seq data with short RAD-seq loci (e.g., <150 bp) should avoid using analytical methods relying on gene trees of individual locus, but using site-based methods such as SVDQuartets and D-statistic method. Our phylogenetic analyses of RAD-seq and Hyb-Seq data resulted in well-resolved species relationships. Analyses of the data using the D-statistic test and PhyloNet revealed ancient introgressions in both genera. Biogeographic analyses including fossil data using total evidence-based dated tree and DEC model applying specific inter-area dispersal probabilities revealed a complicated history for each genus, indicating multiple interareal dispersals and local extinctions within and outside areas of the taxa's modern ranges in both the Paleogene and Neogene. The study demonstrates the importance of including fossil taxa for a more accurate reconstruction of biogeographic histories of taxa to understand the EA and ENA floristic disjunction. Our results support a widespread ancestral range in EA-western North America (WNA) followed by early diversification in EA and expansion to North America (NA) and Europe for Castanea and a more widespread ancestral range in EA-ENA-WNA for Hamamelis. The origins of the modern EA-ENA disjunction in both genera were suggested to be the result of vicariance from widespread ancestors in Eurasia-ENA of the mid-Miocene and in EA-NA of the late Oligocene, respectively., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
8. A New Pipeline for Removing Paralogs in Target Enrichment Data.
- Author
-
Zhou W, Soghigian J, and Xiang QJ
- Subjects
- Phylogeny, Genome, High-Throughput Nucleotide Sequencing
- Abstract
Target enrichment (such as Hyb-Seq) is a well-established high throughput sequencing method that has been increasingly used for phylogenomic studies. Unfortunately, current widely used pipelines for analysis of target enrichment data do not have a vigorous procedure to remove paralogs in target enrichment data. In this study, we develop a pipeline we call Putative Paralogs Detection (PPD) to better address putative paralogs from enrichment data. The new pipeline is an add-on to the existing HybPiper pipeline, and the entire pipeline applies criteria in both sequence similarity and heterozygous sites at each locus in the identification of paralogs. Users may adjust the thresholds of sequence identity and heterozygous sites to identify and remove paralogs according to the level of phylogenetic divergence of their group of interest. The new pipeline also removes highly polymorphic sites attributed to errors in sequence assembly and gappy regions in the alignment. We demonstrated the value of the new pipeline using empirical data generated from Hyb-Seq and the Angiosperms353 kit for two woody genera Castanea (Fagaceae, Fagales) and Hamamelis (Hamamelidaceae, Saxifragales). Comparisons of data sets showed that the PPD identified many more putative paralogs than the popular method HybPiper. Comparisons of tree topologies and divergence times showed evident differences between data from HybPiper and data from our new PPD pipeline. We further evaluated the accuracy and error rates of PPD by BLAST mapping of putative paralogous and orthologous sequences to a reference genome sequence of Castanea mollissima. Compared to HybPiper alone, PPD identified substantially more paralogous gene sequences that mapped to multiple regions of the reference genome (31 genes for PPD compared with 4 genes for HybPiper alone). In conjunction with HybPiper, paralogous genes identified by both pipelines can be removed resulting in the construction of more robust orthologous gene data sets for phylogenomic and divergence time analyses. Our study demonstrates the value of Hyb-Seq with data derived from the Angiosperms353 probe set for elucidating species relationships within a genus, and argues for the importance of additional steps to filter paralogous genes and poorly aligned regions (e.g., as occur through assembly errors), such as our new PPD pipeline described in this study. [Angiosperms353; Castanea; divergence time; Hamamelis; Hyb-Seq, paralogs, phylogenomics.]., (© The Author(s) 2021. Published by Oxford University Press on behalf of the Society of Systematic Biologists.)
- Published
- 2022
- Full Text
- View/download PDF
9. Next Steps in Integrative Biology: Mapping Interactive Processes Across Levels of Biological Organization.
- Author
-
Cavigelli S, Leips J, Xiang QJ, Lemke D, and Konow N
- Subjects
- Animals, Biology, Proteins
- Abstract
Emergent biological processes result from complex interactions within and across levels of biological organization, ranging from molecular to environmental dynamics. Powerful theories, database tools, and modeling methods have been designed to characterize network connections within levels, such as those among genes, proteins, biochemicals, cells, organisms, and species. Here, we propose that developing integrative models of organismal function in complex environments can be facilitated by taking advantage of these methods to identify key nodes of communication across levels of organization. Mapping key drivers or connections among levels of organization will provide data and leverage to model potential rule-sets by which organisms respond and adjust to perturbations at any level of biological organization., (© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.)
- Published
- 2022
- Full Text
- View/download PDF
10. Comprehending Cornales: phylogenetic reconstruction of the order using the Angiosperms353 probe set.
- Author
-
Thomas SK, Liu X, Du ZY, Dong Y, Cummings A, Pokorny L, Xiang QJ, and Leebens-Mack JH
- Subjects
- Phylogeny, Cornaceae, Magnoliopsida genetics
- Abstract
Premise: Cornales is an order of flowering plants containing ecologically and horticulturally important families, including Cornaceae (dogwoods) and Hydrangeaceae (hydrangeas), among others. While many relationships in Cornales are strongly supported by previous studies, some uncertainty remains with regards to the placement of Hydrostachyaceae and to relationships among families in Cornales and within Cornaceae. Here we analyzed hundreds of nuclear loci to test published phylogenetic hypotheses and estimated a robust species tree for Cornales., Methods: Using the Angiosperms353 probe set and existing data sets, we generated phylogenomic data for 158 samples, representing all families in the Cornales, with intensive sampling in the Cornaceae., Results: We curated an average of 312 genes per sample, constructed maximum likelihood gene trees, and inferred a species tree using the summary approach implemented in ASTRAL-III, a method statistically consistent with the multispecies coalescent model., Conclusions: The species tree we constructed generally shows high support values and a high degree of concordance among individual nuclear gene trees. Relationships among families are largely congruent with previous molecular studies, except for the placement of the nyssoids and the Grubbiaceae-Curtisiaceae clades. Furthermore, we were able to place Hydrostachyaceae within Cornales, and within Cornaceae, the monophyly of known morphogroups was well supported. However, patterns of gene tree discordance suggest potential ancient reticulation, gene flow, and/or ILS in the Hydrostachyaceae lineage and the early diversification of Cornus. Our findings reveal new insights into the diversification process across Cornales and demonstrate the utility of the Angiosperms353 probe set., (© 2021 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America.)
- Published
- 2021
- Full Text
- View/download PDF
11. Genetic insights into the evolution of genera with the eastern Asia-eastern North America floristic disjunction: a transcriptomics analysis.
- Author
-
Melton AE, Chen S, Zhao Y, Fu C, Xiang QJ, Cheng S, Wong GK, Soltis PS, Soltis DE, and Gitzendanner MA
- Subjects
- Asia, Asia, Eastern, North America, Phylogeny, Evolution, Molecular, Transcriptome
- Abstract
Premise: Large disjunctions in species distributions provide excellent opportunities to study processes that shape biogeographic patterns. One such disjunction is the eastern Asia-eastern North America (EA-ENA) floristic disjunction. For many genera with this disjunction, species richness is greater in EA than in ENA; this pattern has been attributed, in part, to higher rates of molecular evolution and speciation in EA. Longer branch lengths have been found in some EA clades, relative to their ENA sister clades, suggesting that the EA lineages have evolved at a higher rate, possibly due to environmental heterogeneity, potentially contributing to the species richness anomaly., Methods: To evaluate whether rates of molecular evolution are elevated in EA relative to ENA, we used transcriptomes from species in 11 genera displaying this disjunction. Rates of molecular evolution were estimated for up to 385 orthologous nuclear loci per genus., Results: No statistically significant differences were identified in pairwise comparisons between EA and ENA sister species, suggesting equal rates of molecular evolution for both species; the data also suggest similar selection pressures in both regions. For larger genera, evidence likewise argues against more species-rich clades having higher molecular evolutionary rates, regardless of region. Our results suggest that genes across multiple gene ontology categories are evolving at similar rates under purifying selection in species in both regions., Conclusions: Our data support the hypothesis that greater species richness in EA than ENA is due to factors other than an overall increase in rates of molecular evolution in EA., (© 2020 Botanical Society of America.)
- Published
- 2020
- Full Text
- View/download PDF
12. Corrigendum to "Phylogenomics, co-evolution of ecological niche and morphology, and historical biogeography of buckeyes, horsechestnuts, and their relatives (Hippocastaneae, Sapindaceae) and the value of RAD-Seq for deep evolutionary inferences back to the Late Cretaceous" [Mol. Phylogenet. Evol. 145 (2020) 106726].
- Author
-
Du ZY, Harris AJ, and Xiang QJ
- Published
- 2020
- Full Text
- View/download PDF
13. Phylogenomics, co-evolution of ecological niche and morphology, and historical biogeography of buckeyes, horsechestnuts, and their relatives (Hippocastaneae, Sapindaceae) and the value of RAD-Seq for deep evolutionary inferences back to the Late Cretaceous.
- Author
-
Du ZY, Harris AJ, and Xiang QJ
- Subjects
- Aesculus genetics, Bayes Theorem, Biological Evolution, Ecosystem, Fossils history, History, Ancient, Phylogeny, Phylogeography, RNA, Plant classification, RNA, Plant metabolism, RNA-Seq, Aesculus classification, RNA, Plant chemistry
- Abstract
In this study, we used RAD-seq data to resolve the phylogeny of the tribe Hippocastaneae (Sapindaceae) and conducted comparative analyses to gain insights into the evolution and biogeography of the group that had fossils dating back to the late Cretaceous. Hippocastaneae, including the horsechestnuts and buckeyes, is a well-supported clade in Sapindaceae that comprises 12-14 species in Aesculus, two in Billia, and one in Handeliodendron. Most species in the tribe are distributed in Eurasia and North America and exhibit a classic pattern of intercontinental disjunction in the Northern Hemisphere, while Billia occurs from southern Mexico to northern South America. The earliest fossils of Aesculus date back to at least the earliest Paleocene of eastern Asia and western North America, where there are also putative occurrences from the latest Cretaceous. The group provides an excellent system for understanding floristic disjunction in the Northern Hemisphere extending to the Neotropics. However, a strongly supported and well resolved phylogeny is presently lacking for the tribe. Previous phylogenetic studies using several gene regions revealed five well-supported clades in Aesculus, largely corresponding to five recognized taxonomic sections, but relationships among these clades and among Aesculus, Billia, and Handeliodendron were not well supported. In this study, we used RAD-seq data from 68 samples representing all clades and species of Hippocastaneae except Billia, for which we used one of two species, to further resolve relationships within the tribe. Our phylogenomic analyses showed strong support for a sister relationship between Aesculus and Handeliodendron, in contrast to previous findings which supported Billia as sister to Aesculus. Within Aesculus, relationships among sections were strongly supported as (sect. Calothyrsus, (sect. Aesculus, (sect. Macrothyrsus, (sect. Parryana, sect. Pavia)))). We found that the traditionally recognized section Calothyrsus was monophyletic, with all eastern Asian species sister to the western North American species, A. californica. Analyses of divergence times combined with biogeographic analyses suggested a Late Cretaceous origin of Hippocastaneae, in eastern Asia, western North America, and Central America (including southern Mexico), followed by isolation of Billia in Central America, extinction of the tribe ancestor in western North America, and divergence of Aesculus from Handeliodendron in eastern Asia. A Late Cretaceous origin of the common ancestor of Aesculus in eastern Asia was followed by dispersals into western North America, Europe, and eastern North America during the Late Cretaceous and the Paleogene. Our results support Aesculus as a relic of the boreotropical flora and subsequent intercontinental spread of the genus through the Bering and North Atlantic land bridges. We performed character mapping analyses, which revealed that biogeographic isolation and niche divergence may have played important roles in driving morphological evolution and lineage divergence in Aesculus. Our study demonstrates the value of RAD-seq data for reconstructing phylogeny back to the Late Cretaceous., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
14. Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous.
- Author
-
Fu CN, Mo ZQ, Yang JB, Ge XJ, Li DZ, Xiang QJ, and Gao LM
- Subjects
- Base Composition genetics, Calibration, Codon genetics, Fossils, Genetic Variation, Genome, Plastid, Time Factors, Magnoliopsida genetics, Phylogeny, Phylogeography, Plastids genetics
- Abstract
The Cornales is a relatively small but morphologically diverse order in the basal position of the Asterids clade. Previous study hypothesized that the order might have undergone ancient rapid radiation during the Cretaceous when major angiosperm lineages were established. We conducted the phylogenomic analysis of Cornales using 81 plastid genome sequences with 67 newly generated in this study to test the hypothesis. This sampling represents all the families and 31 out of 48 genera in the order. Phylogenetic analyses were conducted using different datasets to examine the effects of different coding positions and character coding methods. We further conducted divergence time, diversification rate, and biogeographic analyses to understand the early evolutionary history of Cornales in space and time. Our phylogenetic analyses of four datasets (the amino acid characters, the 1
st and 2nd codon positions of protein coding genes, nucleotide characters with degenerated coding method, and noncoding regions) resulted in a robust phylogeny congruent with results of previous studies, showing (((Cornaceae-Alangiaceae)-(Curtisiaceae-Grubbiaceae))-(((Nyssaceae-Davidiaceae)-Mastixiaceae)-((Hydrostachyaceae-(Hydrangeaceae-Loasaceae)))). Phylogenetic relationships within families were also well resolved. Conflicts in the placement of Hydrostachyaceae were found from analyses of two datasets, the nucleotide characters of all codon position and the 3rd codon positions, where the family was united with Loasaceae, but not strongly supported. Results from divergence time analyses suggested a mid-Cretaceous origin of Cornales followed by rapid early diversification into major clades/families within 10 million years. The early diversification of Cornales may have been facilitated by divergence in habitat and morphology following geographic dispersals. The ancestral distribution of the order was inferred as a widespread range covering Asia, Europe, North America, and Africa when including fossils in the analyses, suggesting an origin of the order likely along the Tethys Seaway where the areas were connected in the mid-Cretaceous. Inferred geographic origins of each family differed to some extent between analyses including fossils vs excluding fossils. In the analysis with extant and fossil species, the origins of the African Hydrostachyaceae and Grubbiaceae-Curtisiaceae clade were inferred to have involved two independent events, an intercontinental dispersal from the northern hemisphere to Africa and an intercontinental vicariance between the northern hemisphere and Africa, respectively. Other families were inferred to have evolved in the northern hemisphere with subsequent intercontinental dispersal(s) to other areas including to Central and South America, during their subsequent diversification. Net diversification rate analysis based on treePL dated phylogeny using MEDUSA detected a nearly 5-fold decrease in the African endemic Curtisiaceae-Grubbiaceae (CuG) clade and an increase of rate in the Hydrangeaceae-Loasaceae (HL) clade. Within HL, a decrease in the Fendlera-Jamesia clade and an increase in the Philadelphus clade were also detected. The findings are also consistent with the level of present species diversity in these lineages. Our study demonstrated the value of plastid genome in phylogenomic study, but posed an old challenge of biogeographic study with fossil data and raised caution for the synonymous substitution sites of plastid genome in phylogenomics studies., (Copyright © 2019 Elsevier Inc. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
15. Natural selection and repeated patterns of molecular evolution following allopatric divergence.
- Author
-
Dong Y, Chen S, Cheng S, Zhou W, Ma Q, Chen Z, Fu CX, Liu X, Zhao YP, Soltis PS, Wong GK, Soltis DE, and Xiang QJ
- Subjects
- Asia, Eastern, Genetic Speciation, North America, Plant Leaves genetics, Plants classification, Evolution, Molecular, Genes, Plant, Genetic Variation, Plants genetics, Selection, Genetic
- Abstract
Although geographic isolation is a leading driver of speciation, the tempo and pattern of divergence at the genomic level remain unclear. We examine genome-wide divergence of putatively single-copy orthologous genes (POGs) in 20 allopatric species/variety pairs from diverse angiosperm clades, with 16 pairs reflecting the classic eastern Asia-eastern North America floristic disjunction. In each pair, >90% of POGs are under purifying selection, and <10% are under positive selection. A set of POGs are under strong positive selection, 14 of which are shared by 10-15 pairs, and one shared by all pairs; 15 POGs are annotated to biological processes responding to various stimuli. The relative abundance of POGs under different selective forces exhibits a repeated pattern among pairs despite an ~10 million-year difference in divergence time. Species divergence times are positively correlated with abundance of POGs under moderate purifying selection, but negatively correlated with abundance of POGs under strong purifying selection., Competing Interests: YD, SC, SC, WZ, QM, ZC, CF, XL, YZ, PS, GW, DS, JX No competing interests declared, (© 2019, Dong et al.)
- Published
- 2019
- Full Text
- View/download PDF
16. Functional characterization of Terminal Flower1 homolog in Cornus canadensis by genetic transformation.
- Author
-
Liu X, Zhang J, Xie D, Franks RG, and Xiang QJ
- Subjects
- Cornus genetics, Gene Expression Regulation, Plant genetics, Gene Expression Regulation, Plant physiology, Inflorescence genetics, Inflorescence metabolism, Phylogeny, Plant Proteins genetics, Cornus metabolism, Plant Proteins metabolism
- Abstract
Key Message: TFL1homologCorcanTFL1suppresses the initiation of inflorescence development and regulates the inflorescence morphology inCornus canadensis. In flowering plants, there is a wide range of variation of inflorescence morphology. Despite the ecological and evolutionary importance, efforts devoted to the evolutionary study of the genetic basis of inflorescence morphology are far fewer compared to those on flower development. Our previous study on gene expression patterns suggested a CorTFL1-CorAP1 based model for the evolution of determinate umbels, heads, and mini dichasia from elongated inflorescences in Cornus. Here, we tested the function of CorcanTFL1 in regulating inflorescence development in Cornus canadensis through Agrobacterium-mediated transformation. We showed that transgenic plants overexpressing CorcanTFL1 displayed delayed or suppressed inflorescence initiation and development and extended periods of vegetative growth. Transgenic plants within which CorcanTFL1 had been down-regulated displayed earlier emergence of inflorescence and a reduction of bract and inflorescence sizes, conversions of leaves to bracts and axillary leaf buds to small inflorescences at the uppermost node bearing the inflorescence, or phyllotaxy changes of inflorescence branches and leaves from decussate opposite to spirally alternate. These observations support an important role of CorcanTFL1 in determining flowering time and the morphological destinies of leaves and buds at the node bearing the inflorescence. The evidence is in agreement with the predicted function of CorTFL1 from the gene expression model, supporting a key role of CorTFL1 in the evolutionary divergence of inflorescence forms in Cornus.
- Published
- 2019
- Full Text
- View/download PDF
17. Haplotyping of Cornus florida and C. kousa chloroplasts: Insights into species-level differences and patterns of plastic DNA variation in cultivars.
- Author
-
Nowicki M, Boggess SL, Saxton AM, Hadziabdic D, Xiang QJ, Molnar T, Huff ML, Staton ME, Zhao Y, and Trigiano RN
- Subjects
- Cornus genetics, Evolution, Molecular, Haplotypes, Phylogeny, Plant Breeding, Sequence Analysis, DNA methods, Species Specificity, Chloroplasts genetics, Cornus cytology, DNA, Chloroplast genetics, Mutation
- Abstract
Chloroplast DNA is a part of plant non-nuclear genome, and is of particular interest for lineage studies. Moreover, the non-coding regions of cpDNA display higher mutation rates than the conserved coding cpDNA, which has been employed for phylogenetic and population research. We analyzed the cpDNA of 332 gDNA samples from collections of Cornus florida and C. kousa (commercial cultivars, breeding selections, and wild kousa accessions from Asia), using the chlorotyping system developed on North America-native, wild accessions of C. florida. Our results indicated significant differences in chlorotype frequencies between the two species. Cornus florida samples were represented by all major chlorotypes previously described, whereas all C. kousa samples analyzed had only one of the chlorotype patterns shown by C. florida. The chlorotyping analytic panel was then expanded by sequencing the targeted three non-coding cpDNA regions. Results indicated a major difference in the maternally-inherited cpDNA between the two closely related Big-Bracted Cornus species. Chlorotype diversity and differences in the proportion of informative sites in the cpDNA regions of focus emphasized the importance of proper loci choice for cpDNA-based comparative studies between the closely related dogwood species. Phylogenetic analyses of the retrieved sequences for the other species of Cornus provided information on the relative utility of the cpDNA regions studied and helped delineate the groups (Big-Bracted, Cornelian Cherries, Blue/White-Fruited) within the genus. Genealogical relationships based on the cpDNA sequences and the inferred chlorotype networks indicated the need for continued analyses across further non-coding cpDNA regions to improve the phylogenetic resolution of dogwoods., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
18. Resolving relationships and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq and species distribution modeling.
- Author
-
Zhou W, Ji X, Obata S, Pais A, Dong Y, Peet R, and Xiang QJ
- Subjects
- Bayes Theorem, Genetic Loci, Phylogeny, Polymorphism, Single Nucleotide genetics, Species Specificity, Time Factors, Models, Theoretical, Nyssa classification, Nyssa genetics, Phylogeography, Sequence Analysis, DNA methods
- Abstract
Nyssa sylvatica complex consists of several woody taxa occurring in eastern North America. These taxa were recognized as two or three species including three or four varieties by different authors. Due to high morphological similarities and complexity of morphological variation, classification and delineation of taxa in the group have been difficult and controversial. Here we employ data from RAD-seq to elucidate the genetic structure and phylogenetic relationships within the group. Using the genetic evidence, we evaluate previous classifications and delineate species. We also employ Species Distribution Modeling (SDM) to evaluate impacts of climatic changes on the ranges of the taxa and to gain insights into the relevant refugia in eastern North America. Results from Molecular Variance Analysis (AMOVA), STRUCTURE, phylogenetic analyses using Maximum likelihood, Bayesian Inference, and Splittree methods of RAD-seq data strongly support a two-clade pattern, largely separating samples of N. sylvatica from those of N. biflora-N. ursina mix. Divergence time analysis with BEAST suggests the two clades diverged in the mid Miocene. The ancestor of the present trees of N. sylvatica was suggested to be in the Pliocene and that of N. biflora-N. ursina mix in the end of the Miocene. Results from SDM predicted a smaller range in the southern part of the species present range of each clade during the Last Glacial Maximum (LGM). A northward expansion of the ranges during interglacial period and a northward shift of the ranges in the future under a model of global warming were also predicted. Our results support the recognition of two species in the complex, N. sylvatica and N. biflora, following the phylogenetic species concept. We found no genetic evidence supporting recognitions of intraspecific taxa. However, we propose subsp. ursina and subsp. biflora within N. biflora due to their distinction in habits, distributions, and habitats. Our results further support movements of trees in eastern North America in response to climatic changes. Finally, our study demonstrates that RAD-seq data and a combination of population genomics and SDM are valuable in resolving relationship and biogeographic history of closely related species that are taxonomically difficult., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
19. [Effects of Gypsum on CH 4 Emission and Functional Microbial Communities in Paddy Soil].
- Author
-
Hu XY, Xiang QJ, and Mu ZJ
- Subjects
- Genes, Bacterial, Methylococcaceae classification, Sulfur-Reducing Bacteria classification, Calcium Sulfate chemistry, Methane analysis, Oryza, Soil Microbiology
- Abstract
In this study, the effects of gypsum (FGD) on CH
4 emission and functional microbial community in paddy soil were identified under five treatments, including FGDG0 (0 t·hm-2 ), FGDG1 (2 t·hm-2 ), FGDG2 (4 t·hm-2 ), FGDG3 (8 t·hm-2 ), and FGDG4 (16 t·hm-2 ). The methane flux was determined using static chamber and chromatography. Bacterial community structure and its effect on soil bacterial community structure, and the abundance of methanogenic and methanotrophs were measured via high-throughput sequencing and quantitative PCR. The results showed that after treatment with desulfurated gypsum, pH of the soil increased significantly ( P <0.05). Redox potential, organic carbon, and available potassium content increased, with no significant difference ( P >0.05). The average emission flux of CH4 reduced with the increase of desulfurated gypsum content, following the following trend:FGDG1 > FGDG2 > FGDG3 > FGDG4 . They decreased by 31.56%, 57.30%, 83.60%, and 90.66%, respectively, compared with the control. Compared with the control, FGDG1 and FGDG2 increased the richness and variety of soil bacteria. However, when the application amount exceeds 4 t·hm-2 , the richness and variety of soil bacteria decrease. Compared with the control, the relative abundance of sulfate-reducing bacteria in paddy soil increased significantly by 6.98%-13.56%. The abundance of the methane-oxidizing bacteria pmoA gene increased by 0.3%-6.2%. The abundance of the methanogen gene, mrcA decreased significantly by 2.4%-15.8%, while the abundance ratio ( pmoA/mcrA )increased with the increase of the amount of desulfurated gypsum. Correlation analysis showed that the average emission of CH4 was markedly negatively correlated with the relative abundance of the sulfate-reducing bacteria and pmoA/mcrA percentage in soil, and significantly positively correlated with methanogenic gene, mcrA . In summary, desulfurated gypsum can improve the diversity of bacterial communities and reduce the emission of CH4 in the paddy soils.- Published
- 2018
- Full Text
- View/download PDF
20. [Effects of Bamboo Biochar on Greenhouse Gas Emissions During the Municipal Sludge Composting Process].
- Author
-
Xiang QJ, Yang YH, Zhang C, Xiang XY, and Mu ZJ
- Subjects
- Carbon Dioxide, Methane, Nitrous Oxide, Soil, Charcoal, Composting, Greenhouse Gases analysis, Sewage
- Abstract
Effect of adding bamboo biochar into the compost at different dosages on greenhouse gas emissions was investigated by analyzing the dynamic characteristics of the process of municipal sludge composting with four different composts (S1:adding 2.5% bamboo biochar, S2:adding 5% bamboo biochar, S3:adding 10% bamboo biochar, CK:without bamboo biochar). The results showed that CH
4 emissions mainly occurred during the heating period and the beginning of the altithermal period, accounting for 99.01%-99.81% of the total emissions. When the added bamboo biochar is less than 5%, CH4 emissions decrease with the increase in the amount of bamboo biochar. If it is more than 5%, CH4 emissions will clearly increase. CO2 emissions mainly occurred during the heating period and the altithermal period, accounting for 75.65%-86.58% of the total emissions. Adding bamboo biochar can reduce 3.37%-13.48% of the CO2 emissions but there is no significant difference between the treatments ( P >0.05). N2 O emissions mainly occurred during the heating period and the rotten period. Adding bamboo biochar can reduce the emissions of N2 O; the more the amount of bamboo biochar, the less N2 O emissions ( P <0.05). The emission factors of CK, S1, S2, and S3 were 44.10, 37.57, 35.10, and 35.44 kg·t-1 of dry sludge, respectively. S1, S2, and S3 showed 14.81%-20.41% reduction in greenhouse gas emissions owing to the addition of bamboo biochar, indicating that bamboo biochar can reduce the carbon emissions in the process of sludge composting.- Published
- 2017
- Full Text
- View/download PDF
21. Alterations of CorTFL1 and CorAP1 expression correlate with major evolutionary shifts of inflorescence architecture in Cornus (Cornaceae) - a proposed model for variation of closed inflorescence forms.
- Author
-
Ma Q, Liu X, Franks RG, and Xiang QJ
- Subjects
- Cornaceae growth & development, Gene Expression Regulation, Developmental, Gene Expression Regulation, Plant, In Situ Hybridization, Models, Genetic, Phylogeny, Plant Proteins metabolism, Real-Time Polymerase Chain Reaction, Species Specificity, Biological Evolution, Cornaceae anatomy & histology, Cornaceae genetics, Inflorescence anatomy & histology, Inflorescence genetics, Models, Biological, Plant Proteins genetics
- Abstract
TFL1-, AP1- and LFY-like genes are known to be key regulators of inflorescence development. However, it remains to be tested whether the evolutionary modifications of inflorescence morphology result from shifts in their expression patterns. We compared the spatiotemporal expression patterns of CorTFL1, CorAP1 and CorLFY in six closely related Cornus species that display four types of closed inflorescence morphology using quantitative real-time polymerase chain reaction (qRT-PCR) and RNA in situ hybridization. Character mapping on the phylogeny was conducted to identify evolutionary changes and to assess the correlation between changes in gene expression and inflorescence morphology. Results demonstrated variation of gene expression patterns among species and a strong correlation between CorTFL1 expression and the branch index of the inflorescence type. Evolutionary changes in CorTFL1 and CorAP1 expression co-occurred on the phylogeny with the morphological changes underpinning inflorescence divergence. The study found a clear correlation between the expression patterns of CorTFL1 and CorAP1 and the inflorescence architecture in a natural system displaying closed inflorescences. The results suggest a role for the alteration in CorTFL1 and CorAP1 expression during the evolutionary modification of inflorescences in Cornus. We propose that a TFL1-like and AP1-like gene-based model may explain variation of closed inflorescences in Cornus and other lineages., (© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.)
- Published
- 2017
- Full Text
- View/download PDF
22. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.
- Author
-
Wang HY, Xiao DF, Zhou C, Wang LL, Wu L, Lu YT, Xiang QJ, Zhao K, Li X, and Ma M-
- Subjects
- Acetaldehyde analogs & derivatives, Acetaldehyde metabolism, Aldehydes metabolism, Furaldehyde metabolism, Hydrogen-Ion Concentration, Kinetics, NADP, Oxidation-Reduction, Saccharomyces cerevisiae enzymology, Saccharomyces cerevisiae Proteins metabolism, Substrate Specificity, Aldehyde Reductase genetics, Aldehyde Reductase metabolism, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae Proteins genetics, Transcription, Genetic
- Abstract
The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.
- Published
- 2017
- Full Text
- View/download PDF
23. Ecological genomics of local adaptation in Cornus florida L. by genotyping by sequencing.
- Author
-
Pais AL, Whetten RW, and Xiang QJ
- Abstract
Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next-generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees ( Cornus florida L .) using genotyping by sequencing (GBS). This species is ecologically important to eastern US forests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental-functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases of GBS, we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental-functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluated F
st per locus while accounting for genetic differentiation between coastal subpopulations and Piedmont-Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28-39 were Arlequin-BayeScan Fst outliers. For LFMM, 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment-driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.- Published
- 2016
- Full Text
- View/download PDF
24. Detection of soluble expression and in vivo interactions of the inner membrane protein OppC using green fluorescent protein.
- Author
-
Xiang QJ, Zhai JF, Zhang M, and Zhang B
- Subjects
- Amino Acid Sequence genetics, Bacterial Proteins genetics, Bacterial Proteins metabolism, Cell Survival genetics, Escherichia coli enzymology, Escherichia coli Proteins genetics, Escherichia coli Proteins metabolism, Gene Expression Regulation, Bacterial, Membrane Proteins genetics, Membrane Proteins metabolism, Membrane Transport Proteins genetics, Membrane Transport Proteins metabolism, Plasmids, Protein Binding, Bacterial Proteins biosynthesis, Escherichia coli Proteins biosynthesis, Green Fluorescent Proteins genetics, Membrane Proteins biosynthesis, Membrane Transport Proteins biosynthesis
- Abstract
In this study, the in vivo interaction system of oligopeptide permease (Opp) proteins was analyzed, and a high expression system of inner membrane protein OppC was constructed by flexible usage of the green fluorescent protein (GFP). The Escherichia coli OppC gene, which encodes a transmembrane component of oligopeptide transporter, was cloned into different vectors. Recombinant plasmids were transformed into different E. coli strains, and the expression conditions were optimized. The effect of plasmids and expression strains on OppC production was evaluated by in-gel and western blot analyses. OppC produced by the pWaldo-GFPe vector, harboring the GFP reporter gene, transformed into E. coli C43(DE3) provided sufficient functional protein for biochemical and biophysical studies. In vivo protein-protein interactions were detected among oligopeptide permease proteins using a GFP fragment reassembly protocol. The substrate binding protein OppA showed no interaction with the other components, while the ATP-binding component OppD did not interact with OppF. OppD and OppF interacted with the transmembrane components OppB and OppC. OppB also showed direct interaction with OppC. In vivo OppC functionality was determined by constructing an OppC gene deletion strain. OppC was shown to be essential for peptide uptake, and non-essential for cell viability. These results could help in elucidating the oligopeptide transport mechanism in bacteria.
- Published
- 2015
- Full Text
- View/download PDF
25. Evolution of bract development and B-class MADS box gene expression in petaloid bracts of Cornus s. l. (Cornaceae).
- Author
-
Feng CM, Liu X, Yu Y, Xie D, Franks RG, and Xiang QJ
- Subjects
- Cell Shape, Cornaceae anatomy & histology, Cornaceae ultrastructure, Flowers cytology, Flowers growth & development, Flowers ultrastructure, Gene Expression Regulation, Developmental, Genes, Plant genetics, Inflorescence growth & development, MADS Domain Proteins metabolism, Phylogeny, Plant Epidermis cytology, Plant Epidermis ultrastructure, Plant Leaves cytology, Plant Leaves genetics, Plant Leaves ultrastructure, Plant Proteins genetics, Plant Proteins metabolism, Seasons, Time Factors, Biological Evolution, Cornaceae genetics, Cornaceae growth & development, Flowers genetics, Gene Expression Regulation, Plant, MADS Domain Proteins genetics, Plant Leaves growth & development
- Abstract
Despite increasing interest in the molecular mechanisms of floral diversity, few studies have investigated the developmental and genetic bases of petaloid bracts. This study examined morphological patterns of bract initiation and expression patterns of B-class MADS-box genes in bracts of several Cornus species. We suggest that petaloid bracts in this genus may not share a single evolutionary origin. Developmental pathways of bracts and spatiotemporal expression of B-class genes in bracts and flowers were examined for four closely related dogwood species. Divergent morphological progressions and gene expression patterns were found in the two sister lineages with petaloid bracts, represented by Cornus florida and Cornus canadensis. Phylogeny-based analysis identified developmental and gene expression changes that are correlated with the evolution of petaloid bracts in C. florida and C. canadensis. Our data support the existence of independent evolutionary origins of petaloid bracts in C. canadensis and C. florida. Additionally, we suggest that functional transference within B-class gene families may have contributed to the origin of bract petaloidy in C. florida. However, the underlying mechanisms of petaloid bract development likely differ between C. florida and C. canadensis. In the future this hypothesis can be tested by functional analyses of Cornus B-class genes., (© 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.)
- Published
- 2012
- Full Text
- View/download PDF
26. Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s. l., Cornaceae).
- Author
-
Feng CM, Xiang QJ, and Franks RG
- Subjects
- Cornus genetics, Cornus ultrastructure, Inflorescence genetics, Inflorescence ultrastructure, Meristem genetics, Meristem growth & development, Meristem ultrastructure, Phylogeny, Reproduction physiology, Biological Evolution, Cornus growth & development, Inflorescence growth & development, Organogenesis genetics
- Abstract
• Inflorescence architecture is important to angiosperm reproduction, but our knowledge of the developmental basis underlying the evolution of inflorescence architectures is limited. Using a phylogeny-based comparative analysis of developmental pathways, we tested the long-standing hypothesis that umbel evolved from elongated inflorescences by suppression of inflorescence branches, while head evolved from umbels by suppression of pedicels. • The developmental pathways of six species of Cornus producing different inflorescence types were characterized by scanning electron microscopy (SEM) and histological analysis. Critical developmental events were traced over the molecular phylogeny to identify evolutionary changes leading to the formation of umbels and heads using methods accounting for evolutionary time and phylogenetic uncertainty. • We defined 24 developmental events describing the developmental progression of the different inflorescence types. The evolutionary transition from paniculate cymes to umbels and heads required alterations of seven developmental events occurring at different evolutionary times. • Our results indicate that heads and umbels evolved independently in Cornus from elongated forms via an umbellate dichasium ancestor and this process involved several independent changes. Our findings shed novel insights into head and umbel evolution concealed by outer morphology. Our work illustrates the importance of combining developmental and phylogenetic data to better define morphological evolutionary processes., (© 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.)
- Published
- 2011
- Full Text
- View/download PDF
27. [Cloning and optimizing expression of a periplasmic solute-binding gene gsiB from Escherichia coli].
- Author
-
Wang ZS, Xiang QJ, Wang HY, and Zhang YZ
- Subjects
- Blotting, Western, Cloning, Molecular, DNA, Bacterial genetics, Escherichia coli genetics, Escherichia coli Proteins genetics, Gene Expression Regulation, Bacterial, Green Fluorescent Proteins genetics, Green Fluorescent Proteins metabolism, Membrane Transport Proteins classification, Membrane Transport Proteins genetics, Phylogeny, Polymerase Chain Reaction, Recombinant Fusion Proteins genetics, Recombinant Fusion Proteins metabolism, Transformation, Genetic, Aldehyde Dehydrogenase genetics, Escherichia coli metabolism, Escherichia coli Proteins metabolism, Membrane Transport Proteins metabolism, Periplasm metabolism, Soybean Proteins genetics
- Abstract
Cloning and expression of gsiB was carried out for studying protein structure and function of glutathione transport system. The coding sequence of Escherichia coli gsiB that encodes the periplasmic solute-binding protein of a glutathione transporter was amplified by PCR, and then inserted into a prokaryotic expression vector pWaldo-GFPe harboring GFP reporter gene through the method Sequence and Ligation-Independent Cloning (SLIC). The resulting recombinant plasmid pWaldo-GFP-GsiB was transformed into different E. coli strains and the expression conditions were optimized. It was found that E. coli BL21(DE3) was the best strain for gsiB gene expression among the four strains tested. Induction at lower incubation temperature of 18 degrees C and 0.1 mmol/L of IPTG led to higher expression of gsiB in E. coli BL21(DE3). Western blotting analysis also showed the expression of gsiB and the molecular weight of expressed protein as expected.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.