271 results on '"Xavier Letartre"'
Search Results
2. Magic configurations in moiré superlattice of bilayer photonic crystals: Almost-perfect flatbands and unconventional localization
- Author
-
Dung Xuan Nguyen, Xavier Letartre, Emmanuel Drouard, Pierre Viktorovitch, H. Chau Nguyen, and Hai Son Nguyen
- Subjects
Physics ,QC1-999 - Abstract
We investigate the physics of photonic band structures of the moiré patterns that emerged when overlapping two unidimensional photonic crystal slabs with mismatched periods. The band structure of our system is a result of the interplay between intralayer and interlayer coupling mechanisms, which can be fine-tuned via the distance separating the two layers. We derive an effective Hamiltonian that captures the essential physics of the system and reproduces all numerical simulations of electromagnetic solutions with high accuracy. Most interestingly, magic distances corresponding to the emergence of photonic flatbands within the whole Brillouin zone of the moiré superlattice are observed. We demonstrate that these flatband modes are tightly localized within a moiré period. Moreover, we suggest a single-band tight-binding model that describes the moiré minibands, of which the tunneling rate can be continuously tuned via the interlayer strength. Our results show that the band structure of bilayer photonic moiré can be engineered in the same fashion as the electronic/excitonic counterparts. It would pave the way to study many-body physics at photonic moiré flatbands and optoelectronic devices.
- Published
- 2022
- Full Text
- View/download PDF
3. Tubular optical microcavities based on rolled-up photonic crystals
- Author
-
Rémi Briche, Aziz Benamrouche, Pierre Cremillieu, Philippe Regreny, Jean-Louis Leclercq, Xavier Letartre, Alexandre Danescu, and Ségolène Callard
- Subjects
Applied optics. Photonics ,TA1501-1820 - Abstract
The self-rolling of micro-structured membranes via the stress-engineering method opens new ways to create 3D photonic micro-objects with original designs and optical properties. This article validates this approach by producing 3D hollow micro-resonators based on rolled-up 2D photonic crystal membrane mirrors, capable of trapping light in 3D and in air. We fabricated the 3D tubular microresonators with 10 μm–20 μm diameters by rolling photonic crystal membranes using stress-engineering technique on the prestressed InGaP/InP bilayer. We also added a design feature to lift the microtubes vertically and facilitate optical measurements, but also to attach the structures to the substrate. The dispersion of the planar 2D photonic crystal membrane was optimized to exhibit high reflectivity (>95%) at normal incidence over a large spectral band (100 nm) in the near-infrared domain (1.5 μm–1.6 μm). The cylindrical cavity model and numerical simulations predicted the presence of quasi-pure radial cavity modes with a strong concentration of light over nearly 3% of the photonic microtubes’ cross section. We demonstrated experimentally the presence of those modes through scanning near-field optical microscopy measurements. Using a bowtie nanoantenna, we selectively detected and mapped transverse electric modes in the hollow core of photonic microtubes. Spatially resolved cartographies allowed for the identification of the modes in good agreement with theoretical predictions. This work brings theoretical and experimental proof of concept of light cages based on rolled-up photonic crystal membranes. It also opens the path to the realization of original photonic microstructures as combinations of a specific photonic crystal design and a targeted 3D form.
- Published
- 2020
- Full Text
- View/download PDF
4. A Versatile Silicon-Silicon Nitride Photonics Platform for Enhanced Functionalities and Applications
- Author
-
Quentin Wilmart, Houssein El Dirani, Nicola Tyler, Daivid Fowler, Stéphane Malhouitre, Stéphanie Garcia, Marco Casale, Sébastien Kerdiles, Karim Hassan, Christelle Monat, Xavier Letartre, Ayman Kamel, Minhao Pu, Kresten Yvind, Leif Katsuo Oxenløwe, Wilfried Rabaud, Corrado Sciancalepore, Bertrand Szelag, and Ségolène Olivier
- Subjects
silicon photonics ,silicon nitride ,transceiver ,multiplexing ,grating coupler ,Coarse Wavelength Division Multiplexing (CWDM) ,LIDAR ,optical phased array ,beam steering ,frequency comb ,Kerr nonlinearity ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Silicon photonics is one of the most prominent technology platforms for integrated photonics and can support a wide variety of applications. As we move towards a mature industrial core technology, we present the integration of silicon nitride (SiN) material to extend the capabilities of our silicon photonics platform. Depending on the application being targeted, we have developed several integration strategies for the incorporation of SiN. We present these processes, as well as key components for dedicated applications. In particular, we present the use of SiN for athermal multiplexing in optical transceivers for datacom applications, the nonlinear generation of frequency combs in SiN micro-resonators for ultra-high data rate transmission, spectroscopy or metrology applications and the use of SiN to realize optical phased arrays in the 800–1000 nm wavelength range for Light Detection And Ranging (LIDAR) applications. These functionalities are demonstrated using a 200 mm complementary metal-oxide-semiconductor (CMOS)-compatible pilot line, showing the versatility and scalability of the Si-SiN platform.
- Published
- 2019
- Full Text
- View/download PDF
5. Security Layers and Related Services within the Horizon Europe NEUROPULS Project.
- Author
-
Fabio Pavanello, Cédric Marchand 0002, Paul Jiménez, Xavier Letartre, Ricardo Chaves, Niccolò Marastoni, Alberto Lovato, Mariano Ceccato, George Papadimitriou 0001, Vasileios Karakostas, Dimitris Gizopoulos, Roberta Bardini, Tzamn Melendez Carmona, Stefano Di Carlo, Alessandro Savino, Laurence Lerch, Ulrich Rührmair, Sergio Vinagrero Gutierrez, Giorgio Di Natale, and Elena Ioana Vatajelu
- Published
- 2024
- Full Text
- View/download PDF
6. EUROPULS: NEUROmorphic energy-efficient secure accelerators based on Phase change materials aUgmented siLicon photonicS.
- Author
-
Fabio Pavanello, Cédric Marchand 0002, Ian O'Connor, Régis Orobtchouk, Fabien Mandorlo, Xavier Letartre, Sébastien Cueff, Elena Ioana Vatajelu, Giorgio Di Natale, Benoit Cluzel, Aurelien Coillet, Benoît Charbonnier, Pierre Noe, Frantisek Kavan, Martin Zoldak, Michal Szaj, Peter Bienstman, Thomas Van Vaerenbergh, Ulrich Rührmair, Paulo F. Flores, Luís Guerra e Silva, Ricardo Chaves, Luís Miguel Silveira, Mariano Ceccato, Dimitris Gizopoulos, George Papadimitriou 0001, Vasileios Karakostas, Axel Brando, Francisco J. Cazorla, Ramon Canal, Pau Closas, Adria Gusi-Amigo, Paolo Crovetti, Alessio Carpegna, Tzamn Melendez Carmona, Stefano Di Carlo, and Alessandro Savino
- Published
- 2023
- Full Text
- View/download PDF
7. An Energy-Efficient Reconfigurable Nanophotonic Computing Architecture Design: Optical Lookup Table.
- Author
-
Zhen Li 0046, Christelle Monat, Sébastien Le Beux, Xavier Letartre, and Ian O'Connor
- Published
- 2017
- Full Text
- View/download PDF
8. Thermal aware design method for VCSEL-based on-chip optical interconnect.
- Author
-
Hui Li 0034, Alain Fourmigue, Sébastien Le Beux, Xavier Letartre, Ian O'Connor, and Gabriela Nicolescu
- Published
- 2015
9. Multilevel Modeling Methodology for Reconfigurable Computing Systems Based on Silicon Photonics.
- Author
-
Zhen Li 0046, Sébastien Le Beux, Christelle Monat, Xavier Letartre, and Ian O'Connor
- Published
- 2015
- Full Text
- View/download PDF
10. Photonic thermal sensor by phase interrogation around the critical coupling in hybrid metal-dielectric photonic structures
- Author
-
Théo Girerd, Lydie Ferrier, Lotfi Berguiga, Fabien Mandorlo, Taha Benyattou, Cécile Jamois, and Xavier Letartre
- Published
- 2023
11. Complementary logic interface for high performan optical computing with OLUT.
- Author
-
Zhen Li 0046, Sébastien Le Beux, Ian O'Connor, Christelle Monat, and Xavier Letartre
- Published
- 2014
- Full Text
- View/download PDF
12. Silicon CMOS compatible transition metal dioxide technology for boosting highly integrated photonic devices with disruptive performance.
- Author
-
Pablo Sanchis, L. Sánchez, Pau Castera, Alvaro Rosa, Ana M. Gutiérrez, Antoine Brimont, Guillaume Saint-Girons, Régis Orobtchouk, Sébastien Cueff, Pedro Rojo-Romeo, Romain Bachelet, Philippe Regreny, Bertrand Vilquin, Catherine Dubourdieu, Xavier Letartre, G. Grenet, José Penuelas, X. Hu, L. Louahadj, Jean-Pierre Locquet, L. Zimmermann, Chiara Marchiori, Stefan Abel, Jean Fompeyrine, and A. Hakansson
- Published
- 2014
- Full Text
- View/download PDF
13. Photonic crystal membrane resonators: A wealth of new photonic functionality.
- Author
-
Pierre Viktorovitch, Xavier Letartre, Badhise Ben Bakir, and Sylvie Menezo
- Published
- 2014
- Full Text
- View/download PDF
14. Reconfigurable photonic switching: Towards all-optical FPGAs.
- Author
-
Sébastien Le Beux, Zhen Li 0046, Christelle Monat, Xavier Letartre, and Ian O'Connor
- Published
- 2013
- Full Text
- View/download PDF
15. Potential and pitfalls of silicon photonics computing and interconnect.
- Author
-
Sébastien Le Beux, Ian O'Connor, Zhen Li 0046, Xavier Letartre, Christelle Monat, Jelena Trajkovic, and Gabriela Nicolescu
- Published
- 2013
- Full Text
- View/download PDF
16. Optical look up table.
- Author
-
Zhen Li 0046, Sébastien Le Beux, Christelle Monat, Xavier Letartre, and Ian O'Connor
- Published
- 2013
- Full Text
- View/download PDF
17. Analytical non-Hermitian description of Photonic Crystals with arbitrary Lateral and Transverse symmetry
- Author
-
Xavier Letartre, Serge Mazauric, Sébastien Cueff, Taha Benyattou, Hai Son Nguyen, Pierre Viktorovitch, and xavier, letartre
- Subjects
[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,FOS: Physical sciences ,Physics::Optics ,Optics (physics.optics) ,Physics - Optics - Abstract
In this work we propose a general theoretical approach to the modelling of complex dispersion characteristics of leaky optical modes operating in photonic crystal slab composed of two high-index contrast gratings, beyond the protection of the light cone. Opening access of wave-guided resonances to free space continuum provides large amount of extra degrees of freedom for mode coupling engineering. Not only can the two gratings communicate via near field coupling, but they are also allowed to couple via the propagating radiated field. Our analytical model, based on a non-Hermitian Hamiltonian, including both coupling schemes, allows for a unified description of the wide family of optical modes which may be generated within uni-dimensional photonic crystal. Through a variety of illustrative examples, we show that our theoretical approach provide a simplified categorization of these modes, but it is also a powerful enabler for the discovery of novel photonic species. Finally, as proof-of-concept, we demonstrate experimentally the formation of a Dirac point at the merging of three bound states in the continuum that is the most achieved photonic specie discussed in this work., 34 pages, 23 figures
- Published
- 2022
18. Optical Network On-chip Multi-Domain modeling using SystemC.
- Author
-
Emmanuel Drouard, Matthieu Briere, Fabien Mieyeville, Ian O'Connor, and Xavier Letartre
- Published
- 2004
19. Comparing Strip and Slot Waveguides for Phase-Change Material Devices in SOI Platforms
- Author
-
Clément Zrounba, Raphael Cardoso, Mohab Abdalla, Sebastien Cueff, Alberto Bosio, Sebastien Le Beux, Xavier Letartre, Ian O'Connor, and Fabio Pavanello
- Abstract
We introduce a novel design for integrated phase-change material devices. A figure-of-merit is introduced to quantify the improvement of the proposed design over previous implementations. Additionally, the significance of non-linear effects is discussed.
- Published
- 2022
20. Ultimate Phase Sensitivity in Surface Plasmon Resonance Sensors by Tuning Critical Coupling with Phase Change Materials
- Author
-
Cécile Jamois, Xavier Letartre, Sébastien Cueff, Taha Benyattou, Lotfi Berguiga, Lydie Ferrier, Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Cueff, Sébastien
- Subjects
Surface (mathematics) ,Materials science ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,FOS: Physical sciences ,Applied Physics (physics.app-ph) ,02 engineering and technology ,01 natural sciences ,010309 optics ,Phase change ,Optics ,Phase (matter) ,0103 physical sciences ,Sensitivity (control systems) ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business.industry ,Physics - Applied Physics ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,3. Good health ,13. Climate action ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,business ,Optics (physics.optics) ,Physics - Optics - Abstract
Plasmonic sensing is an established technology for real-time biomedical diagnostics and air-quality monitoring. While intensity and wavelength tracking are the most commonly used interrogation methods for Surface Plasmon Resonance (SPR), several works indicate the potential superiority of phase interrogation in detection sensitivity. Here, we theoretically and numerically establish the link between ultra-high sensitivities in phase interrogation SPR sensors and the critical coupling condition. However, reaching this condition requires a technically infeasible angstrom-level precision in the metal layer thickness. We propose a robust solution to overcome this limitation by coupling the SPR with a phase-change material (PCM) thin film. By exploiting the multilevel reconfigurable phase states of PCM, we theoretically demonstrate ultra-high phase sensitivities with a limit of detection as low as $10^{-10}$ refractive index unit (RIU). Such a PCM-assisted SPR sensor platform paves the way for unprecedented sensitivity sensors for the detection of trace amounts of low molecular weight species in biomedical sensing and environmental monitoring., 10 pages, 7 figures
- Published
- 2021
21. Magic configurations in Moir\'e Superlattice of Bilayer Photonic crystal: Almost-Perfect Flatbands and Unconventional Localization
- Author
-
Dung Xuan Nguyen, Xavier Letartre, Emmanuel Drouard, Pierre Viktorovitch, H. Chau Nguyen, and Hai Son Nguyen
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences ,General Physics and Astronomy ,Optics (physics.optics) ,Physics - Optics - Abstract
We investigate the physics of photonic band structures of the moir\'e patterns that emerged when overlapping two uni-dimensional (1D) photonic crystal slabs with mismatched periods. The band structure of our system is a result of the interplay between intra-layer and inter-layer coupling mechanisms, which can be fine-tuned via the distance separating the two layers. We derive an effective Hamiltonian that captures the essential physics of the system and reproduces all numerical simulations of electromagnetic solutions with high accuracy. Most interestingly, \textit{magic distances} corresponding to the emergence of photonic flatbands within the whole Brillouin zone of the moir\'e superlattice are observed. We demonstrate that these flatband modes are tightly localized within a moir\'e period. Moreover, we suggest a single-band tight-binding model that describes the moir\'e minibands, of which the tunnelling rate can be continuously tuned via the inter-layer strength. Our results show that the band structure of bilayer photonic moir\'e can be engineered in the same fashion as the electronic/excitonic counterparts. It would pave the way to study many-body physics at photonic moir\'e flatbands and novel optoelectronic devices., Comment: 6 pages + Supplement. Comments are welcome!
- Published
- 2021
22. Hybrid chip-based nonlinear optical devices using graphene
- Author
-
Christelle Monat, Pierre Demongodin, Jérémy Lhuillier, Milan Sinobad, Houssein El Dirani, Crochemore, R., Corrado Sciancalepore, Thomas Wood, Malik Kemiche, Radoslav Mazurczyk, Philippe Regreny, Pedro Rojo Romeo, Bertrand Vilquin, Xavier Letartre, Ségolène Callard, Sébastien Cueff, Christian Grillet, Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Nanophotonique (INL - Photonique), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), grillet, christian, GRAphene nonlinear PHotonic Integrated CircuitS - GRAPHICS - - H20202015-09-01 - 2020-09-01 - 648546 - VALID, and Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
- Subjects
[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic - Abstract
International audience; The recent development of silicon photonics, namely based on Si and Si derivative materials (e.g. Si3N4), has enabled the integration of a wide range of optical devices onto the same chip. However, due the intrinsic limitations of silicon, some devices cannot be efficiently integrated in silicon monolithic architectures. III-V/ Si wafer bonding and LiNBO3 thin film technologies have already provided a path to increase the functionalities that can be heterogeneously integrated onto silicon chips, now turned hybrid [1]. Two-dimensional materials represent another promising route to complement the properties of silicon and create compact hybrid architectures with novel functionalities. The most mature of these 2D materials, graphene, has attracted lots of attention as it exhibits attractive nonlinear optical properties, such as a large photo-refractive Kerr index, and saturable absorption, which might be interesting for nonlinear photonic chips and all-optical information processing. While its intrinsic properties are relatively high for a monolayer-thick material, the use of integrated optics provides a way to enhance the otherwise low absolute response of this 2D material. Besides, the capability of tuning graphene optical properties provides an additional advantage to realize on-demand and reconfigurable nonlinear photonic devices. I will here discuss some of these developments, including our recent demonstration of hybrid graphene/ Si3N4 waveguides for chip-based saturable absorbers [2]. Our work also shows that hybrid graphene coated waveguides provide a relevant platform to unravel the dynamics of graphene nonlinear optical properties. Finally, some limitations of graphene nonlinear properties lead us to explore, with our Australian collaborators, alternative 2D materials such as graphene oxide [3], which might represents an interesting trade-off in terms of linear absorption and nonlinearity.
- Published
- 2020
23. Low-voltage, broadband graphene-coated Bragg mirror electro-optic modulator at telecom wavelengths
- Author
-
Thomas, Wood, Jérémy, Lhuillier, Malik, Kemiche, Pierre, Demongodin, Bertrand, Vilquin, Pedro Rojo, Romeo, Ali, Belarouci, Lotfi, Berguiga, Ségolène, Callard, Xavier, Letartre, and Christelle, Monat
- Abstract
We demonstrate a graphene based electro-optic free-space modulator yielding a reflectance contrast of 20% over a strikingly large 250nm wavelength range, centered in the near-infrared telecom band. Our device is based on the original association of a planar Bragg reflector, topped with an electrically contacted double-layer graphene capacitor structure employing a high work-function oxide shown to confer a static doping to the graphene in the absence of an external bias, thereby reducing the switching voltage range to +/-1V. The device design, fabrication and opto-electric characterization is presented, and its behavior modeled using a coupled optical-electronic framework.
- Published
- 2020
24. Towards active photonic dispersion control using graphene-induced non-radiative loss
- Author
-
Geneviève Grenet, Malik Kemiche, Thomas Wood, Jérémy Lhuillier, Sébastien Cueff, Christelle Monat, Xavier Letartre, Pierre Demongodin, Bertrand Vilquin, Pedro Rojo-Romeo, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and INL - Matériaux Fonctionnels et Nanostructures (INL - MFN)
- Subjects
Materials science ,business.industry ,Graphene ,Oxide ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Spatial modulation ,law.invention ,010309 optics ,chemistry.chemical_compound ,chemistry ,law ,0103 physical sciences ,Dispersion (optics) ,Radiative transfer ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Photonics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,Absorption (electromagnetic radiation) ,business - Abstract
International audience; We show that the photonic dispersion of a two coupled-mode system can be actively tuned using graphene-induced non-radiative loss. Our implementation exploits the spatial modulation of graphene's absorption via patterned oxide substrates.
- Published
- 2020
25. Towards low-power near-infrared modulators operating at telecom wavelengths: when graphene plasmons frustrate their metallic counterparts
- Author
-
Jérémy Lhuillier, Pierre Demongodin, Xavier Letartre, Philippe Regreny, Aziz Benamrouche, Malik Kemiche, Christelle Monat, Ségolène Callard, Pedro Rojo-Romeo, Thomas Wood, Bertrand Vilquin, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), H2020 ERC project, European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics::Optics ,02 engineering and technology ,Coupled mode theory ,7. Clean energy ,01 natural sciences ,law.invention ,010309 optics ,Resonator ,law ,0103 physical sciences ,Surface plasmon resonance ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Plasmon ,Graphene ,business.industry ,Statistical and Nonlinear Physics ,021001 nanoscience & nanotechnology ,Surface plasmon polariton ,Atomic and Molecular Physics, and Optics ,Wavelength ,Excited state ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; A free-space electro-optic modulator device exploiting graphene's surface plasmon polariton (SPP) at near-infrared frequencies is proposed and theoretically studied. The device is made up of two resonant structures, the first being a metallic SPP displaying broadband absorption, and the second graphene's own SPP, which is shown to frustrate the metallic plasmon when excited, leading to a narrow reflectance peak. Doping of the graphene to achieve Fermi-level tuning is shown to shift the wavelength of the frustration phenomenon, thereby enabling the use of the device as a modulator. A reduction of 20% in the switching energy is expected due to the unique principle of operation which, crucially and contrary to most work in this field, does not rely on electroabsorption but electrorefraction changes in graphene. This coupled SPP resonator geometry also permits efficient channeling of optical energy from free space into graphene's SPP at near-infrared frequencies.
- Published
- 2020
- Full Text
- View/download PDF
26. Metallo-dielectric metasurfaces for thermal emission with controlled spectral bandwidth and angular aperture
- Author
-
Pierre Viktorovitch, Céline Chevalier, Cécile Jamois, Leo Wojszvzyk, Xavier Letartre, Lydie Ferrier, François Marquier, Jean-Jacques Greffet, Cédric Blanchard, Jean-Louis Leclercq, and Ioana Moldovan-Doyen
- Subjects
Materials science ,business.industry ,Bandwidth (signal processing) ,Physics::Optics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,02 engineering and technology ,Dielectric ,021001 nanoscience & nanotechnology ,Coupled mode theory ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,010309 optics ,Resonator ,Angular aperture ,Optics ,0103 physical sciences ,Emissivity ,0210 nano-technology ,business ,Astrophysics::Galaxy Astrophysics ,Circular polarization ,Photonic crystal - Abstract
We introduce thermal metallo-dielectric metasurfaces as mid IR sources. The emitter is a lossy metal. The spectral and angular emission is controlled using a periodic array of high refractive dielectric resonators. We introduce a design that allows to control independently the emission bandwidth and the angular aperture while ensuring a large emissivity. To validate the concept, we fabricated and characterized a metasurface, showing a good agreement with the theory.
- Published
- 2021
27. UV-Light Generation in Silicon Nitride Resonators Pumped at Telecom Wavelengths
- Author
-
Leif Katsuo Oxenløwe, H. El Dirani, Minhao Pu, C. Socquet-Clerc, Christelle Monat, Xavier Letartre, Sebastien Kerdiles, J. Laegsgaard, Marco Casale, Corrado Sciancalepore, A. N. Kamel, Kresten Yvind, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), DTU Fotonik, Danmarks Tekniske Universitet = Technical University of Denmark (DTU), INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nonlinear optics ,Materials science ,business.industry ,ultraviolet light generation ,Laser ,law.invention ,chemistry.chemical_compound ,Four-wave mixing ,Wavelength ,Resonator ,Silicon nitride ,chemistry ,law ,Optoelectronics ,four-wave mixing ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Photonics ,business - Abstract
International audience; We demonstrate for the first time continuous-wave coherent 392-nm-light UV-emission using an integrated CMOS-compatible silicon nitride resonator pumped at 1570 nm.
- Published
- 2019
28. Tailoring the Local Density of Optical States and Directionality of Light Emission by Symmetry Breaking
- Author
-
Rashid Zia, Matthew Shao Ran Huang, Hai Son Nguyen, Xavier Letartre, Florian Dubois, Pierre Viktorovitch, Sébastien Cueff, Dongfang Li, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), School of Engineering (Brown Engineering), Brown University, ANR-16-CE24-0004,SNAPSHOT,Nano-couches minces commutables pour la photonique sur silicium : vers de nouveaux composants optoélectroniques ultra-efficaces(2016), and ANR-15-CE24-0026,PICSEL,VCSELs pour la photonique intégrée compatible CMOS(2015)
- Subjects
Physics ,Photoluminescence ,Condensed matter physics ,business.industry ,Physics::Optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0103 physical sciences ,Dispersion (optics) ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Light emission ,Symmetry breaking ,Stimulated emission ,Electrical and Electronic Engineering ,Photonics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,0210 nano-technology ,business ,Order of magnitude ,ComputingMilieux_MISCELLANEOUS ,Photonic crystal - Abstract
We present a method to simultaneously engineer the energy-momentum dispersion and the local density of optical states (LDOS). Using vertical symmetry breaking in high-contrast gratings, we enable the mixing of modes with different parities, thus producing hybridized modes with controlled dispersion. By tuning geometric parameters, we control the coupling between Bloch modes, leading to flatband, M- and W-shaped dispersion as well as Dirac dispersion. This dispersion-engineering leads to tailored LDOS and we experimentally demonstrate a two order of magnitude enhancement of photoluminescence from weak emitters—defects in silicon—via optical modes with adjustable angle of emission. This vertical symmetry-breaking method could readily be used in various photonic crystals and metasurfaces devices and opens up a new way to strongly boost light emission on-chip and to steer it to arbitrary directions.
- Published
- 2019
29. Optimizing the shape of InAs/InP quantum dot-nanowires grown by MBE on silicon for efficient light sources emitting in the telecom band
- Author
-
Ali Jaffal, Philippe Regreny, Walid Redjem, Hai Son Nguyen, Sébastien Cueff, Xavier Letartre, Gilles Patriarche, Emmanuel Rousseau, Guillaume Cassabois, Michel Gendry, Nicolas Chauvin, INL - Spectroscopies et Nanomatériaux (INL - S&N), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), INL - Nanophotonique (INL - Photonique), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2019
30. Technological advances on Si and Si3N4 low-loss waveguide platforms for nonlinear and quantum optics applications
- Author
-
Christelle Monat, Camille Petit-Etienne, Houssein El Dirani, Xavier Letartre, Cyril Bellegarde, Corrado Sciancalepore, Erwine Pargon, Jean-Michel Hartmann, Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), and STMicroelectronics [Crolles] (ST-CROLLES)
- Subjects
Materials science ,Photon ,Band gap ,Complementary metal-oxide-semiconductor (CMOS) ,Physics::Optics ,Silicon on insulator ,correlated photons ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,010309 optics ,Resonator ,Kerrbased comb generation ,020210 optoelectronics & photonics ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,photonic integrated circuits (PICs) ,ComputingMilieux_MISCELLANEOUS ,Quantum optics ,hydrogen annealing ,silicon nitride (Si3N4) ,[PHYS]Physics [physics] ,Silicon photonics ,nonlinear integrated optics ,business.industry ,resonators ,Atomic clock ,quantum integrated circuits ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,business - Abstract
In this communication, we report on the design, fabrication, and testing of silicon-on-insulator (SOI) and silicon-nitrideon- insulator (SiNOI) photonic circuits for nonlinear and quantum optics applications. As recently demonstrated, the generation of correlated photons on Si platforms can be used for quantum cryptography and quantum computing. Concerning SiNOI waveguides, Kerr frequency combs have been proposed in many applications, such as atomic clocks, on-chip spectroscopy, and terabit coherent communications. Silicon is an attractive platforms for correlated photons sources because of its high nonlinearity, they can have several modes in telecom band with sharp line widths (tens of μeV) and its inherent complementary metal-oxide-semiconductor (CMOS) compatibility. Moreover, the SiNOI is an attractive platform for Kerr comb generation due to their large bandgap and consequently the low two-photon absorption in the telecommunication band. Furthermore, in all the previous SiNOI-based frequency combs, the silicon nitride film undergoes long and high-temperature annealing to reduce the absorption in the telecommunication band caused by the dangling N-H bonds, thus making such annealed Si3N4 films non-CMOS compatible. However, both in the case of correlated photons pairs generation and Kerr frequency combs, the source efficiency is related to the quality factor (Q), so that a high-Q resonator is required to get highly-efficient sources. Authors report here about the fabrication and the characterization of annealing-free CMOS-compatible SiNOI- and hydrogen-annealed silicon-based waveguides and microresonators featuring ultra-low losses (e.g., 0.6 dB/cm for single-mode Si waveguides) that can be used, respectively, as efficient sources for Kerr combs and correlated photon pairs sources.
- Published
- 2019
31. A Versatile Silicon-Silicon Nitride Photonics Platform for Enhanced Functionalities and Applications
- Author
-
Stephane Malhouitre, Xavier Letartre, Segolene Olivier, Quentin Wilmart, A. N. Kamel, Marco Casale, Leif Katsuo Oxenløwe, Minhao Pu, Houssein El Dirani, Nicola A. Tyler, Wilfried Rabaud, Stephanie Garcia, Sebastien Kerdiles, Corrado Sciancalepore, Daivid Fowler, Karim Hassan, Bertrand Szelag, Christelle Monat, Kresten Yvind, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silicon nitride ,Silicon photonics ,02 engineering and technology ,Nitride ,lcsh:Technology ,01 natural sciences ,7. Clean energy ,Multiplexing ,lcsh:Chemistry ,LIDAR ,chemistry.chemical_compound ,020210 optoelectronics & photonics ,Beam steering ,0202 electrical engineering, electronic engineering, information engineering ,frequency comb ,Grating coupler ,General Materials Science ,Transceiver ,lcsh:QH301-705.5 ,Instrumentation ,ComputingMilieux_MISCELLANEOUS ,Fluid Flow and Transfer Processes ,multiplexing ,Phased-array optics ,silicon photonics ,General Engineering ,lcsh:QC1-999 ,Optical phased array ,Computer Science Applications ,Metrology ,Frequency comb ,silicon nitride ,CMOS ,Optoelectronics ,Materials science ,optical phased array ,Coarse Wavelength Division Multiplexing (CWDM) ,beam steering ,Kerr nonlinearity ,010309 optics ,0103 physical sciences ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,transceiver ,lcsh:T ,business.industry ,Process Chemistry and Technology ,grating coupler ,lcsh:Biology (General) ,lcsh:QD1-999 ,chemistry ,lcsh:TA1-2040 ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Photonics ,lcsh:Engineering (General). Civil engineering (General) ,business ,lcsh:Physics - Abstract
Silicon photonics is one of the most prominent technology platforms for integrated photonics and can support a wide variety of applications. As we move towards a mature industrial core technology, we present the integration of silicon nitride (SiN) material to extend the capabilities of our silicon photonics platform. Depending on the application being targeted, we have developed several integration strategies for the incorporation of SiN. We present these processes, as well as key components for dedicated applications. In particular, we present the use of SiN for athermal multiplexing in optical transceivers for datacom applications, the nonlinear generation of frequency combs in SiN micro-resonators for ultra-high data rate transmission, spectroscopy or metrology applications and the use of SiN to realize optical phased arrays in the 800&ndash, 1000 nm wavelength range for Light Detection And Ranging (LIDAR) applications. These functionalities are demonstrated using a 200 mm complementary metal-oxide-semiconductor (CMOS)-compatible pilot line, showing the versatility and scalability of the Si-SiN platform.
- Published
- 2019
32. Optical frequency comb generation using annealing-free Si3N4 films for front-end monolithic integration with Si photonics
- Author
-
Marco Casale, Minhao Pu, Sebastien Kerdiles, Houssein El Dirani, Kresten Yvind, Corrado Sciancalepore, A. N. Kamel, Xavier Letartre, Leif Katsuo Oxenløwe, Christelle Monat, Sonia M. García-Blanco, Pavel Cheben, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Danmarks Tekniske Universitet (DTU), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Complimentary metal-oxide-semiconductor (CMOS) ,Materials science ,Silicon on insulator ,02 engineering and technology ,Integrated circuit ,7. Clean energy ,01 natural sciences ,law.invention ,010309 optics ,Frequency comb ,chemistry.chemical_compound ,Kerr-based comb generation ,law ,0103 physical sciences ,Silicon nitride (Si3N4) ,Resonators ,Crystalline silicon ,ComputingMilieux_MISCELLANEOUS ,Nonlinear integrated optics ,Silicon photonics ,Photonic integrated circuits (PICs) ,business.industry ,Photonic integrated circuit ,021001 nanoscience & nanotechnology ,Silicon nitride ,chemistry ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,0210 nano-technology ,business - Abstract
In this communication, we report on the design, fabrication and testing of silicon-nitride-in-insulator (SiNOI) nonlinear photonic circuits for comb generation in silicon photonics and optoelectronics. The low two-photon absorption when compared with crystalline silicon makes the SiNOI an attractive platform for frequency comb generation. Kerr combs have been recently used in terabit per second coherent communications demos. Such devices can overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogenous integration of III-V on SOI lasers for both datacom and telecom applications. By using monolithically-integrated SiN-based Kerr frequency combs, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides and resonators, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. However, in all the previous SiNOI-based frequency combs, the silicon nitride film is annealed under long and high temperature which made the cointegration with silicon based optoelectronics elusive. The annealing steps used in common SiN fabrication processes are not only incompatible with the front-end of line complementary metal-oxide-semiconductor processes, but also costly and long and thus an important cost factor in non-CMOS compatible processes. In our work, we present the fabrication and testing of an annealing-free and crack-free SiNOI. Notably, a 800-nm-spanning (1300-2100 nm) frequency comb is generated using 740-nm-thick silicon nitride featuring full compatibility with silicon photonics integrated circuits. This work constitutes a new, decisive step toward time-stable power-efficient Kerr-based broadband sources featuring full process compatibility with Si photonic integrated circuits (Si-PICs) on CMOS-lines.
- Published
- 2019
33. InAs/InP quantum dot-nanowire single photon sources in the telecom band grown monolithically on silicon substrates
- Author
-
Ali Jaffal, Walid Redjem, Philippe Regreny, Hai-Son Nguyen, Sébastien Cueff, Xavier Letartre, Gilles Patriarche, Emmanuel Rousseau, Guillaume Cassabois, Michel Gendry, Nicolas Chauvin, INL - Spectroscopies et Nanomatériaux (INL - S&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), INL - Nanophotonique (INL - Photonique), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)
- Subjects
[SPI]Engineering Sciences [physics] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2018
34. Reconfigurable Flat Optics with Programmable Reflection Amplitude Using Lithography‐Free Phase‐Change Material Ultra‐Thin Films (Advanced Optical Materials 2/2021)
- Author
-
Arnaud Taute, Julien Lumeau, Xavier Letartre, Stephane Monfray, Qinghua Song, Sébastien Cueff, Antoine Bourgade, Brice Devif, Patrice Genevet, and Lotfi Berguiga
- Subjects
Optics ,Amplitude ,Materials science ,business.industry ,Optical materials ,Reflection (physics) ,Thin film ,business ,Lithography ,Phase-change material ,Atomic and Molecular Physics, and Optics ,Light modulation ,Electronic, Optical and Magnetic Materials - Published
- 2021
35. Si3N4-based optical frequency comb generation featuring front-end CMOS- and Si-photonics process compatibility
- Author
-
Minhao Pu, Leif Katsuo Oxenløwe, Christelle Monat, H. El Dirani, Sebastien Kerdiles, Xavier Letartre, A. N. Kamel, Corrado Sciancalepore, Marco Casale, and Kresten Yvind
- Subjects
Front and back ends ,Materials science ,CMOS ,business.industry ,Compatibility (mechanics) ,Optoelectronics ,Optical frequency comb ,Photonics ,business - Published
- 2018
36. Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics
- Author
-
Leif Katsuo Oxenløwe, Xavier Letartre, Minhao Pu, A. N. Kamel, Christelle Monat, Sebastien Kerdiles, Houssein El Dirani, Corrado Sciancalepore, Kresten Yvind, Marco Casale, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Danmarks Tekniske Universitet (DTU), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), DTU Fotonik, Technical University of Denmark [Lyngby] (DTU), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Silicon ,Silicon on insulator ,chemistry.chemical_element ,Physics::Optics ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,010309 optics ,chemistry.chemical_compound ,Frequency comb ,Condensed Matter::Materials Science ,0103 physical sciences ,Crystalline silicon ,Silicon photonics ,business.industry ,Photonic integrated circuit ,021001 nanoscience & nanotechnology ,chemistry ,Silicon nitride ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,0210 nano-technology ,business - Abstract
International audience; Silicon-nitride-on-insulator (SiNOI) is an attractive platform for optical frequency comb generation in the telecommunication band because of the low two-photon absorption and free carrier induced nonlinear loss when compared with crystalline silicon. However, the high-temperature annealing that has been used so far for demonstrating Si3N4-based frequency combs made the co-integration with silicon-based optoelectronics elusive, thus reducing dramatically its effective complementary metal oxide semiconductor (CMOS) compatibility. We report here on the fabrication and testing of annealing-free SiNOI nonlinear photonic circuits. In particular, we have developed a process to fabricate low-loss, annealing-free, and crack-free Si3N4 740-nm-thick films for Kerr-based nonlinear photonics featuring a full process compatibility with front-end silicon photonics. Experimental evidence shows that micro-resonators using such annealing-free silicon nitride films are capable of generating a frequency comb spanning 1300-2100 nm via optical parametrical oscillation based on four-wave mixing. This work constitutes a decisive step toward time-stable power-efficient Kerr-based broadband sources featuring full process compatibility with Si photonic integrated circuits (Si-PICs) on CMOS-.lines.
- Published
- 2018
37. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones
- Author
-
Thierry Deschamps, Hai Son Nguyen, Pierre Viktorovitch, Christian Seassal, Florian Dubois, Jean-Louis Leclercq, Sébastien Cueff, Antonin Pardon, Xavier Letartre, Biologie et physiologie des états septiques, IFR114-Université de Lille, Droit et Santé, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'électromagnétisme Microondes et optoélectronique (LEMO ), and Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Local density of states ,Condensed matter physics ,business.industry ,Dirac (software) ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Symmetry (physics) ,Planar ,Quantum mechanics ,0103 physical sciences ,Dispersion (optics) ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Symmetry breaking ,Photonics ,010306 general physics ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS ,Optics (physics.optics) ,Physics - Optics ,Photonic crystal - Abstract
We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.
- Published
- 2018
38. SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics
- Author
-
Leif Katsuo Oxenløwe, Minhao Pu, Peter David Girouard, Nicolas Olivier, Xavier Letartre, Corrado Sciancalepore, Houssein El Dirani, Christophe Jany, Elizaveta Semenova, S. Brision, Christelle Monat, Lars Hagedorn Frandsen, Kresten Yvind, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Alcatel-Thalès III-V lab (III-V Lab), THALES [France]-ALCATEL, Laboratoire d'optique et biosciences (LOB), École polytechnique (X)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of photonics engineering, Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Department of Photonics Engineering [Lyngby], European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), THALES-ALCATEL, and Technical University of Denmark [Lyngby] (DTU)
- Subjects
Materials science ,Silicon ,Physics::Instrumentation and Detectors ,Complementary metal-oxide-semiconductor (CMOS) ,Silicon on insulator ,chemistry.chemical_element ,Physics::Optics ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,Kerr-based continuum generation ,010309 optics ,Frequency comb ,chemistry.chemical_compound ,020210 optoelectronics & photonics ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Silicon nitride (Si3N4) ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,Nonlinear integrated optics ,Silicon photonics ,Photonic integrated circuits (PICs) ,business.industry ,Nanowires ,Photonic integrated circuit ,Supercontinuum ,chemistry ,Silicon nitride ,Aluminum gallium arsenide silicon optoelectronics ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,business - Abstract
In this communication, we report on the design, fabrication, and testing of Silicon Nitride on Insulator (SiNOI) and Aluminum-Gallium-Arsenide (AlGaAs) on silicon-on-insulator (SOI) nonlinear photonic circuits for continuum generation in Silicon (Si) photonics. As recently demonstrated, the generation of frequency continua and supercontinua can be used to overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogeneous integration of III-V on SOI lasers for datacom and telecom applications. By using the Kerr nonlinearity of monolithic silicon nitride and heterointegrated GaAs-based alloys on SOI, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. In our work, we present paths to energy-efficient continua generation on silicon photonics circuits. Notably, we demonstrate spectral broadening covering the full C-band via Kerrbased self-phase modulation in SiNOI nanowires featuring full process compatibility with Si photonic devices. Moreover, AlGaAs waveguides are heterointegrated on SOI in order to dramatically reduce (x1/10) thresholds in optical parametric oscillation and in the power required for supercontinuum generation under pulsed pumping. The manufacturing techniques allowing the monolithic co-integration of nonlinear functionalities on existing CMOS-compatible Si photonics for both active and passive components will be shown. Experimental evidence based on self-phase modulation show SiNOI and AlGaAs nanowires capable of generating wide-spanning frequency continua in the C-Band. This will pave the way for low-threshold power-efficient Kerr-based comb- and continuum- sources featuring compatibility with Si photonic integrated circuits (Si-PICs).
- Published
- 2018
39. Slow Light Dispersion Engineering of Active Photonic Crystal Cavities for Compact and Integrated Mode-Locked Lasers
- Author
-
Xavier Letartre, Malik Kemiche, Radoslaw Mazurczyk, Pedro Rojo-Romeo, Philippe Regreny, Aziz Benamrouche, Jérémy Lhuillier, Thomas Wood, Ségolène Callard, Christelle Monat, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Hétéroepitaxie et Nanostructures (INL - H&N), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Dispersion engineering ,Materials science ,business.industry ,Physics::Optics ,02 engineering and technology ,Chip ,Laser ,Slow light ,law.invention ,020210 optoelectronics & photonics ,law ,Dispersion (optics) ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0202 electrical engineering, electronic engineering, information engineering ,Laser mode locking ,Optoelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business ,Photonic crystal - Abstract
International audience; We realize compact active photonic crystal cavities for miniaturized chip-based pulsed lasers. We experimentally validate our approach relying on slow-light dispersion engineering for sustaining the intended regular comb of modes from a 30 µm long cavity.
- Published
- 2018
40. An Energy-Efficient Reconfigurable Nanophotonic Computing Architecture Design: Optical Lookup Table
- Author
-
Christelle Monat, Xavier Letartre, Ian O'Connor, Zhen Li, Sébastien Le Beux, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and INL - Conception de Systèmes Hétérogènes (INL - CSH)
- Subjects
Computer science ,Design space exploration ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Optical switch ,010309 optics ,020210 optoelectronics & photonics ,Computer architecture ,Filter (video) ,Wavelength-division multiplexing ,0103 physical sciences ,Lookup table ,0202 electrical engineering, electronic engineering, information engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Optical filter ,Field-programmable gate array ,ComputingMilieux_MISCELLANEOUS ,Efficient energy use - Abstract
We present an energy-efficient on-chip reconfigurable computing architecture, the so-called OLUT, which is an optical core implementation of a lookup table. It offers significant improvement with respect to optical directed logic architectures, through allowing the use of wavelength division multiplexing (WDM) for computation parallelism. We performed a design space exploration that elucidates the add-drop filter characteristics needed to produce a computing architecture with high computation reliability (BER~10-18) and low energy consumption. Analytical results demonstrate the potential of the resulting OLUT implementation to reach
- Published
- 2017
41. Addressing nanoantennas with slow Bloch mode cavity: application to optical trapping (Conference Presentation)
- Author
-
Pierre Viktorovitch, Cécile Jamois, Xavier Letartre, Fadi Issam Baida, Ali El Eter, Thierry Grosjean, Laurent Milord, and Taha Benyattou
- Subjects
Electromagnetic field ,Physics ,business.industry ,Nanophotonics ,Nanotechnology ,Trapping ,Laser ,law.invention ,Optical tweezers ,law ,Optoelectronics ,business ,Plasmon ,Photonic crystal ,Gaussian beam - Abstract
Photonic crystal and plasmonic structures are the two main approaches used in nanophotonic for efficiently confining and enhancing the electromagnetic field at subwavelength scale. For these reasons, these two approaches have been both used for the optical trapping of nanometric particle. We present, here, experimental results showing that structures combining both photonic crystal and nanoantennas could lead to improved trapping performances. In previous theoretical papers [1, 2] we have shown that when the critical coupling between a photonic crystal and a nanoantenna is reached, a large Gaussian beam could be efficiently coupled to a single nanoantenna. In this way, it is possible to generate a nanometric hotspot in the nanoantenna leading to a very efficient optical trap. The experimental demonstration of this effect has been obtained on an SOI sample consisting in a gold nanoantenna located at the centre of a photonic crystal cavity. Stable trapping of 100 nm diameter nanoparticle has been observed using a 5mW laser at 1.31µm with a 5µm waist. The nanoparticle are trapped above the nanoantenna gap and a normalized trap stiffness of 0.3 fN.nm-1.mW-1 is measured. This result demonstrates the interest of this approach. We will discuss and compare it to the state of the art of nanotweezers. [1] A. El Eter et al. Opt. Express 22, 14464 (2014). [2] A. Belarouci et al. Opt. Express 18, A381 (2010).
- Published
- 2017
42. High-index dielectric optical metasurface with broken vertical symmetry (Conference Presentation)
- Author
-
Pierre Viktorovitch, Xavier Letartre, Hai Son Nguyen, Thierry Deschamps, Jean-Louis Leclercq, Christian Seassal, and Florian Dubois
- Subjects
Physics ,Optics ,business.industry ,Physics::Optics ,Symmetry breaking ,Dielectric ,Photonics ,Dissipation ,business ,Polarization (waves) ,Curvature ,Plasmon ,Photonic crystal - Abstract
The seminal work of R.B. Wood (1902), who discovered anomalies in the reflection spectra of sub-wavelength metallic gratings, triggered the field of plasmonics, where ultra-thin metallic sheets laterally structured on a sub-wavelength scale, so called metallic meta-surface, are under operation. The goal of the field has extended considerably in the last decades and has aimed at arbitrary control over the amplitude, phase and polarization… of light waves at the sub-wavelength scale. All-dielectric meta-surfaces consisting in nano-structured thin films of high index dielectric material, are attracting much attention, owing to their capability to achieve the same goal as their metallic counterpart, yet with an enhanced efficiency (especially for the manipulation of strong optical resonances), being freed from significant energy dissipation as encountered in metallic nano-structures. All dielectric meta-surfaces have been around for quite a while, but were named differently (photonic crystal dielectric membranes or high index contrast gratings). Unless rare exceptions, the literature reports on structures with non-broken vertical symmetry. In the present contribution we emphasize that breaking the vertical symmetry of all-dielectric meta-surfaces provides a widely enhanced degree of freedom for the control of spatial routes and spectral characteristics of light, which depends, to an essential extent, on the local density of photonic states in the thin nano-structured dielectric film. As an enlightening illustration, we concentrate on a dielectric meta-surface formed by two super-imposed identical evanescently coupled gratings, with adjustable gap distance and lateral alignment. We show that this remarkably simple meta-surface can provide any local density of photonic states from zero (Dirac cone) to infinity (ultra-flat zero curvature dispersion characteristics), as well as any constant density over an adjustable spectral range. Exemplifying applications will illustrate the great potential of this new approach.
- Published
- 2017
43. Vers la réalisation de composants optiques nonlinéaires intégrés sur puce exploitant du graphène
- Author
-
Alexandra Pavlova, Malik Kemiche, Jérémy Lhuillier, Thomas Wood, Radoslaw Mazurczyk, Philippe Regreny, Pedro Rojo Romeo, Bertrand Vilquin, christian grillet, Ségolène Callard, Xavier Letartre, Christelle Monat, Inl, Laboratoire INL UMR5270, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), and Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
- Subjects
[PHYS]Physics [physics] ,[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[PHYS] Physics [physics] - Abstract
3-7 juillet 2017; International audience; no abstract
- Published
- 2017
44. Tuneable Dual-Mode Micro-Resonator Associating Photonic Crystal Membrane and Fabry–Perot Cavity
- Author
-
Xavier Letartre, Pierre Viktorovitch, Koku Kusiaku, Jean-Louis Leclercq, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Materials science ,Field (physics) ,business.industry ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[SPI]Engineering Sciences [physics] ,Resonator ,020210 optoelectronics & photonics ,Optics ,Amplitude ,Position (vector) ,0103 physical sciences ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0202 electrical engineering, electronic engineering, information engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,business ,Fabry–Pérot interferometer ,Coupling coefficient of resonators ,Photonic crystal ,Matrix method - Abstract
International audience; We report on a tuneable dual-wavelength micro-resonator with a resonant photonic crystal membrane (PCM) inserted in a vertical Fabry-Perot (FP) cavity. Strong optical coupling between both resonators leads to dual-wavelength resonances. Their energy difference, determined by the overlap of both modes, can be tuned using micro-opto-electro-mechanical systems. Variations in spectral and field overlaps are considered separately with a phenomenological matrix method through, respectively, the FP cavity thickness and the PCM position change. This approach is compared with 2-D finite-difference time-domain simulations in the second case. Periodic evolution of both modes is observed with unsymmetrical amplitude, unlike with the model cause of its approximations.
- Published
- 2014
45. Effects of Photonic Crystals on the Light Output of Heavy Inorganic Scintillators
- Author
-
Etiennette Auffray, Paul Lecoq, A. Knapitsch, Xavier Letartre, C.W. Fabjan, Jean-Louis Leclercq, and Radoslaw Mazurczyk
- Subjects
Nuclear and High Energy Physics ,Materials science ,business.industry ,Physics::Optics ,Photodetector ,Light scattering ,Semiconductor laser theory ,law.invention ,Optics ,Nuclear Energy and Engineering ,law ,Optoelectronics ,Electrical and Electronic Engineering ,Reactive-ion etching ,business ,Rigorous coupled-wave analysis ,Electron-beam lithography ,Photonic crystal ,Light-emitting diode - Abstract
Photonic crystals (PhCs) are optical materials which can affect the propagation of light in multiple ways. In recent years PhCs contributed to major technological developments in the field of semiconductor lasers, light emitting diodes and photovoltaic applications. In our case we are investigating the capabilities of photonic crystal slabs with the aim to improve the performance of heavy inorganic scintillators. To study the combination of scintillators and PhCs we use a Monte-Carlo program to simulate the light propagation inside a scintillator and a rigorous coupled wave analysis (RCWA) framework to analyse the optical PhC properties. The simulations show light output improvements of a wide range of scintillating materials due to light scattering effects of the PhC slabs. First samples have been produced on top of 1.2 × 2.6 × 5 mm LSO (cerium-doped Lutetium Oxyorthosilicate, Lu2SiO5:Ce3+) scintillators using electron beam lithography and reactive ion etching (RIE). Our samples show a 30-60% light output improvement when compared to unstructured reference crystals which is in close accordance with our simulation results. In addition, a theoretical investigation of the restrictions of the current PhC sample is given which concludes with prospects for improved future designs.
- Published
- 2013
46. Towards an Integrated Mode-Locked Microlaser Based on Two-Dimensional Photonic Crystals and Graphene
- Author
-
Xavier Letartre, Alexandra Pavlova, Pedro Rojo-Romeo, P. Regreny, Christelle Monat, Pierre Viktorovitch, Elena D. Obraztsova, and Christian Seassal
- Subjects
Materials science ,business.industry ,Graphene ,Mode (statistics) ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,law.invention ,law ,Optoelectronics ,Electrical and Electronic Engineering ,0210 nano-technology ,business ,Photonic crystal - Published
- 2013
47. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)
- Author
-
Christian Grillet, Xavier Letartre, Cédric Blanchard, Pierre Viktorovitch, Jean-Louis Leclercq, and Cécile Jamois
- Subjects
Physics ,Photon ,business.industry ,Physics::Optics ,Resonance ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Laser ,Polarization (waves) ,01 natural sciences ,law.invention ,010309 optics ,Resonator ,Optics ,law ,Q factor ,0103 physical sciences ,Optoelectronics ,Light emission ,0210 nano-technology ,business ,Photonic crystal - Abstract
Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.
- Published
- 2016
48. High-index contrast/photonic crystal gratings: a wealth of new photonic functionality
- Author
-
Badhise Ben Bakir, Pierre Viktorovitch, Sylvie Menezo, Xavier Letartre, xavier, letartre, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Département d'Optronique (DOPT), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,business.industry ,Beam steering ,02 engineering and technology ,01 natural sciences ,Vertical-cavity surface-emitting laser ,Semiconductor laser theory ,Resonator ,020210 optoelectronics & photonics ,Semiconductor ,Optics ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photonics ,010306 general physics ,business ,ComputingMilieux_MISCELLANEOUS ,Photonic crystal ,Group delay and phase delay - Abstract
High index contrast / Photonic Crystal membrane (HCG/PCM) resonators can be exploited to perform an arbitrarily adjustable molding of light at the wavelength scale: they can process free-space as well as wave-guided optical modes along a variety of addressing configurations and transfer functions, where the spectral, spatial, polarization, phase, group delay… characteristics can be resolved accurately and adjusted at will. The physics of HCG resonators will be revisited based on a simple analytical approach and intuitive arguments, thus providing direct routes for design rules. Specifically, such desired functionalities as wavelength tuning and beam steering will be emphasized. Practical implementation of these functionalities will be presented in the case of VCSEL devices, where silicon HCG/PCM resonators are used as reflectors and are heterogeneously integrated with III-V semiconductor gain material, along a CMOS compatible technological approach.
- Published
- 2014
49. Widened photonic functionality of asymmetric high-index contrast/photonic crystal gratings
- Author
-
Xavier Letartre, Florian Dubois, Pierre Viktorovitch, Jean-Louis Leclercq, Christian Seassal, Hai Son Nguyen, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de transplantation urologie-néphrologie (ITUN), and Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)
- Subjects
Physics ,Photon ,Silicon ,business.industry ,chemistry.chemical_element ,Astrophysics::Cosmology and Extragalactic Astrophysics ,02 engineering and technology ,Laser ,USable ,law.invention ,Transverse plane ,020210 optoelectronics & photonics ,Optics ,Effective mass (solid-state physics) ,chemistry ,law ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0202 electrical engineering, electronic engineering, information engineering ,Optoelectronics ,Photonics ,business ,ComputingMilieux_MISCELLANEOUS ,Photonic crystal - Abstract
In this presentation we emphasize that, within the variety of parameters usable for the design of HCGs, the transverse (vertical) symmetry properties of HCGs provide a power-full joystick for the dispersion engineering of guided mode resonances. We concentrate on asymmetric HCGs designed to accommodate guided mode resonances with ultra-flat zero-curvature dispersion characteristics (or photons with ultra-heavy effective mass), as well as with Dirac cone shaped linear dispersion characteristics. Examples of the great potential of this family of asymmetric HCGs will include the development of a platform for polaritonic devices and the production of micro-lasers particularly suited for hybrid III-V / silicon heterogeneous photonic integration, along CMOS compatible technological schemes.
- Published
- 2016
50. Controlled Multi-Wavelength Emission in Full CMOS Compatible Micro-Lasers for on Chip Interconnections
- Author
-
Regis Orobtchouk, J-M. Fedeli, Pierre Viktorovitch, Xavier Letartre, Nicolas Olivier, Pedro Rojo Romeo, Lydie Ferrier, and Fabien Mandorlo
- Subjects
mode hopping ,Materials science ,Physics::Optics ,Coupled mode theory ,Waveguide (optics) ,law.invention ,Resonator ,Optics ,law ,on-chip optical interconnections ,Photonic crystal ,Coupling ,Multi-mode optical fiber ,business.industry ,CMOS ,wavelength control ,Laser ,Atomic and Molecular Physics, and Optics ,laser ,microdisk ,Optoelectronics ,business ,heterogeneous integration ,photonic crystal ,multimode emission - Abstract
We report on a system to control the emitted wavelength of a laser independently from its pump conditions. To illustrate the concept, it is applied to III-V microdisk lasers fabricated on a CMOS pilot line for application to multicolored optical interconnections. Two different control systems are experimentally studied. The first one requires two coupling areas between the resonator and its coupled waveguide while the second solution is based on a photonic crystal mirror and a single coupling area. In both cases, the independent tuning of their emission from the pump conditions is demonstrated with a very high compacity. A controlled multimode emission in microdisk lasers is obtained for the first time.
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.