1. Real time live imaging of phytopathogenic bacteria Xanthomonas campestris pv. campestris MAFF106712 in 'plant sweet home'.
- Author
-
Akimoto-Tomiyama C, Furutani A, and Ochiai H
- Subjects
- Cell Death, Time Factors, Arabidopsis microbiology, Molecular Imaging, Xanthomonas campestris cytology, Xanthomonas campestris physiology
- Abstract
Xanthomonas is one of the most widespread phytobacteria, causing diseases on a variety of agricultural plants. To develop novel control techniques, knowledge of bacterial behavior inside plant cells is essential. Xanthomonas campestris pv. campestris, a vascular pathogen, is the causal agent of black rot on leaves of Brassicaceae, including Arabidopsis thaliana. Among the X. campestris pv. campestris stocks in the MAFF collection, we selected XccMAFF106712 as a model compatible pathogen for the A. thaliana reference ecotype Columbia (Col-0). Using modified green fluorescent protein (AcGFP) as a reporter, we observed real time XccMAFF106712 colonization in planta with confocal microscopy. AcGFP-expressing bacteria colonized the inside of epidermal cells and the apoplast, as well as the xylem vessels of the vasculature. In the case of the type III mutant, bacteria colonization was never detected in the xylem vessel or apoplast, though they freely enter the xylem vessel through the wound. After 9 days post inoculation with XccMAFF106712, the xylem vessel became filled with bacterial aggregates. This suggests that Xcc colonization can be divided into main four steps, (1) movement in the xylem vessel, (2) movement to the next cell, (3) adhesion to the host plant cells, and (4) formation of bacterial aggregates. The type III mutant abolished at least steps (1) and (2). Better understanding of Xcc colonization is essential for development of novel control techniques for black rot.
- Published
- 2014
- Full Text
- View/download PDF