1. The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance
- Author
-
Hazrat Bilal, Muhammad Nadeem Khan, Sabir Khan, Muhammad Shafiq, Wenjie Fang, Rahat Ullah Khan, Mujeeb Ur Rahman, Xiaohui Li, Qiao-Li Lv, and Bin Xu
- Subjects
Antimicrobial Resistance ,Artificial Intelligence ,Machine Learning, Drug Discovery ,AMR surveillance ,Biotechnology ,TP248.13-248.65 - Abstract
Antimicrobial resistance (AMR) is a major threat to global public health. The current review synthesizes to address the possible role of Artificial Intelligence and Machine Learning (AI/ML) in mitigating AMR. Supervised learning, unsupervised learning, deep learning, reinforcement learning, and natural language processing are some of the main tools used in this domain. AI/ML models can use various data sources, such as clinical information, genomic sequences, microbiome insights, and epidemiological data for predicting AMR outbreaks. Although AI/ML are relatively new fields, numerous case studies offer substantial evidence of their successful application in predicting AMR outbreaks with greater accuracy. These models can provide insights into the discovery of novel antimicrobials, the repurposing of existing drugs, and combination therapy through the analysis of their molecular structures. In addition, AI-based clinical decision support systems in real-time guide healthcare professionals to improve prescribing of antibiotics. The review also outlines how can AI improve AMR surveillance, analyze resistance trends, and enable early outbreak identification. Challenges, such as ethical considerations, data privacy, and model biases exist, however, the continuous development of novel methodologies enables AI/ML to play a significant role in combating AMR.
- Published
- 2025
- Full Text
- View/download PDF