1. Cu2ZnSnS4/Bi2FeCrO6 semiconductor heterojunction grown by pulsed laser deposition and its optoelectronic properties
- Author
-
WANG Jie, MA Shuai, XIA Feng-jin, DONG Hong-zhou, SHA Zhen-zong, and JIA Rui-bin
- Subjects
pulsed laser deposition ,cu2znsns4 ,bi2fecro6 ,heterojunction ,semiconductor ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Inorganic Bi-based double perovskite oxide, Bi2FeCrO6 (BFCO), has offered new opportunities for applications in burgeoning fields of optoelectronic and photovoltaic, due to its unique multiferroic properties at room temperature. The P-type direct-bandgap semiconductor Cu2ZnSnS4 (CZTS) was adopted to couple with BFCO as hole transport layer, in order to construct BFCO/CZTS heterostructure. Pulsed laser deposition (PLD) technique was used to deposit above-mentioned polynary compound films on different substrates (i.e. FTO conductive glass, Nb-doped SrTiO3 and Si/SiO2/Ti/Pt). For the preparation of heterojunctions, the interfacial defects and impurities could be effectively restrained by in-situ layer-by-layer deposition technique. The systematical analysis according to SEM, AFM, EDS and XRD measurements verified that the morphology of the achieved stoichiometric films was basically uniform and dense. The impacts of deposition temperature on the product performance were emphatically investigated. The bandgap of obtained BFCO and CZTS films (i.e. 2.23 eV and 1.49 eV, respectively) was estimated by using Tauc method based on visible absorption spectroscopy measurements. The results show that BFCO/CZTS heterojunction has a favorable rectifying characteristic; the leakage current mechanism is consistent with Schottky emission model when the electric field intensity spans from 0.5 kV/cm to 2.0 kV/cm.
- Published
- 2021
- Full Text
- View/download PDF