Rodolakis, F., Rueff, J. -P., Sikora, M., Alliot, I., Itié, J. -P., Baudelet, F., Ravy, S., Wzietek, P., Hansmann, P., Toschi, A., Haverkort, M. W., Sangiovanni, G., Held, K., Metcalf, P., Marsi, M., Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institute for Solid State Physics [Vienna], Vienna University of Technology (TU Wien), Max-Planck-Institut für Festkörperforschung, Max-Planck-Gesellschaft, Max Planck Institute for Chemical Physics of Solids (CPfS), Department of Chemistry, and Purdue University [West Lafayette]
V2O3 is an archetypal system for the study of correlation induced, Mott-Hubbard metal-insulator transitions. Despite decades of extensive investigations, the accurate description of its electronic properties remains an open problem in the physics of strongly correlated materials, also because of the lack of detailed experimental data on its electronic structure over the whole phase diagram. We present here a high resolution X-ray absorption spectroscopy study at the V K-edge of (V(1-x)Crx)2O3 to probe its electronic structure as a function of temperature, doping and pressure, providing an accurate picture of the electronic changes over the whole phase diagram. We also discuss the relevance of the parallel evolution of the lattice parameters, determined with X-ray diffraction. This allows us to draw two conclusions of general interest: first, the transition under pressure presents peculiar properties, related to a more continuous evolution of the lattice and electronic structure; second, the lattice mismatch is a good parameter describing the strength of the first order transition, and is consequently related to the tendency of the system towards the coexistence of different phases. Our results show that the evolution of the electronic structure while approaching a phase transition, and not only while crossing it, is also a key element to unveil the underlying physical mechanisms of Mott materials .