1. Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi
- Author
-
Wuyang Ren, Wenhua Xue, Shuping Guo, Ran He, Liangzi Deng, Shaowei Song, Andrei Sotnikov, Kornelius Nielsch, Jeroen van den Brink, Guanhui Gao, Shuo Chen, Yimo Han, Jiang Wu, Ching-Wu Chu, Zhiming Wang, Yumei Wang, and Zhifeng Ren
- Subjects
Science - Abstract
Abstract Studies of vacancy-mediated anomalous transport properties have flourished in diverse fields since these properties endow solid materials with fascinating photoelectric, ferroelectric, and spin-electric behaviors. Although phononic and electronic transport underpin the physical origin of thermoelectrics, vacancy has only played a stereotyped role as a scattering center. Here we reveal the multifunctionality of vacancy in tailoring the transport properties of an emerging thermoelectric material, defective n-type ZrNiBi. The phonon kinetic process is mediated in both propagating velocity and relaxation time: vacancy-induced local soft bonds lower the phonon velocity while acoustic-optical phonon coupling, anisotropic vibrations, and point-defect scattering induced by vacancy shorten the relaxation time. Consequently, defective ZrNiBi exhibits the lowest lattice thermal conductivity among the half-Heusler family. In addition, a vacancy-induced flat band features prominently in its electronic band structure, which is not only desirable for electron-sufficient thermoelectric materials but also interesting for driving other novel physical phenomena. Finally, better thermoelectric performance is established in a ZrNiBi-based compound. Our findings not only demonstrate a promising thermoelectric material but also promote the fascinating vacancy-mediated anomalous transport properties for multidisciplinary explorations.
- Published
- 2023
- Full Text
- View/download PDF