130 results on '"Wurtele ES"'
Search Results
2. Year-and-a-half old, dried echinacea roots retain cytokine-modulating capabilities in an in vitro human older adult model of influenza vaccination.
- Author
-
Senchina DS, Wu L, Flinn GN, Konopka DN, McCoy J, Widrlechner MP, Wurtele ES, and Kohut ML
- Published
- 2006
3. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function.
- Author
-
Galeano D, Imrat, Haltom J, Andolino C, Yousey A, Zaksas V, Das S, Baylin SB, Wallace DC, Slack FJ, Enguita FJ, Wurtele ES, Teegarden D, Meller R, Cifuentes D, and Beheshti A
- Subjects
- Animals, Humans, Erythrocytes drug effects, Erythrocytes metabolism, Small Molecule Libraries pharmacology, Small Molecule Libraries chemistry, Embryonic Development drug effects, Embryonic Development genetics, Neural Networks, Computer, MicroRNAs genetics, MicroRNAs metabolism, Zebrafish genetics, Deep Learning
- Abstract
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Modulation of the Arabidopsis Starch Metabolic Network by the Cytosolic Acetyl-CoA Pathway in the Context of the Diurnal Illumination Cycle.
- Author
-
Wang L, Foster CM, Mentzen WI, Tanvir R, Meng Y, Nikolau BJ, Wurtele ES, and Li L
- Subjects
- ATP Citrate (pro-S)-Lyase metabolism, ATP Citrate (pro-S)-Lyase genetics, Circadian Rhythm genetics, Arabidopsis Proteins metabolism, Arabidopsis Proteins genetics, Transcriptome, Photoperiod, Seedlings metabolism, Seedlings genetics, Gene Expression Profiling, Plant Leaves metabolism, Plant Leaves genetics, Plants, Genetically Modified, Arabidopsis metabolism, Arabidopsis genetics, Starch metabolism, Acetyl Coenzyme A metabolism, Gene Expression Regulation, Plant, Metabolic Networks and Pathways, Cytosol metabolism
- Abstract
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants with reduced ACL activity accumulate abnormally enlarged starch granules. In this study, we explored the underlying molecular mechanisms linking cytosolic acetyl-CoA generation and starch metabolism under short-day photoperiods. We performed transcriptome and quantification of starch accumulation in the leaves of wild-type and antisense seedlings with reduced ACL activity. The antisense- ACLA mutant accumulated more starch than the wild type under short-day conditions. Zymogram analyses were conducted to compare the activities of starch-metabolizing enzymes with transcriptomic changes in the seedling. Differential expression between wild-type and antisense- ACLA plants was detected in genes implicated in starch and acetyl-CoA metabolism, and cell wall metabolism. These analyses revealed a strong correlation between the transcript levels of genes responsible for starch synthesis and degradation, reflecting coordinated regulation at the transcriptomic level. Furthermore, our data provide novel insights into the regulatory links between cytosolic acetyl-CoA metabolism and starch metabolic pathways.
- Published
- 2024
- Full Text
- View/download PDF
5. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs.
- Author
-
McDonald JT, Kim J, Farmerie L, Johnson ML, Trovao NS, Arif S, Siew K, Tsoy S, Bram Y, Park J, Overbey E, Ryon K, Haltom J, Singh U, Enguita FJ, Zaksas V, Guarnieri JW, Topper M, Wallace DC, Meydan C, Baylin S, Meller R, Muratani M, Porterfield DM, Kaufman B, Mori MA, Walsh SB, Sigaudo-Roussel D, Mebarek S, Bottini M, Marquette CA, Wurtele ES, Schwartz RE, Galeano D, Mason CE, Grabham P, and Beheshti A
- Subjects
- Humans, DNA Breaks, Double-Stranded radiation effects, Radiation Injuries genetics, Radiation Injuries prevention & control, Male, Mitochondria radiation effects, Mitochondria metabolism, Mitochondria genetics, Female, Adult, MicroRNAs genetics, MicroRNAs metabolism, Space Flight, Cosmic Radiation adverse effects, Astronauts
- Abstract
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. A comprehensive SARS-CoV-2 and COVID-19 review, Part 2: host extracellular to systemic effects of SARS-CoV-2 infection.
- Author
-
Narayanan SA, Jamison DA Jr, Guarnieri JW, Zaksas V, Topper M, Koutnik AP, Park J, Clark KB, Enguita FJ, Leitão AL, Das S, Moraes-Vieira PM, Galeano D, Mason CE, Trovão NS, Schwartz RE, Schisler JC, Coelho-Dos-Reis JGA, Wurtele ES, and Beheshti A
- Subjects
- Animals, Humans, SARS-CoV-2, COVID-19
- Abstract
COVID-19, the disease caused by SARS-CoV-2, has caused significant morbidity and mortality worldwide. The betacoronavirus continues to evolve with global health implications as we race to learn more to curb its transmission, evolution, and sequelae. The focus of this review, the second of a three-part series, is on the biological effects of the SARS-CoV-2 virus on post-acute disease in the context of tissue and organ adaptations and damage. We highlight the current knowledge and describe how virological, animal, and clinical studies have shed light on the mechanisms driving the varied clinical diagnoses and observations of COVID-19 patients. Moreover, we describe how investigations into SARS-CoV-2 effects have informed the understanding of viral pathogenesis and provide innovative pathways for future research on the mechanisms of viral diseases., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. Editorial: Carbon allocation, volume II.
- Author
-
Tanvir R, Gibson SI, Wurtele ES, and Li L
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
8. SARS-CoV-2 Orphan Gene ORF10 Contributes to More Severe COVID-19 Disease.
- Author
-
Haltom J, Trovao NS, Guarnieri J, Vincent P, Singh U, Tsoy S, O'Leary CA, Bram Y, Widjaja GA, Cen Z, Meller R, Baylin SB, Moss WN, Nikolau BJ, Enguita FJ, Wallace DC, Beheshti A, Schwartz R, and Wurtele ES
- Abstract
The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host., Competing Interests: Conflicting Interests R.E.S. is on the scientific advisory board of Miromatrix Inc and Lime Therapeutics and is a paid consultant and speaker for Alnylam Inc. D.C.W. is on the scientific advisory boards of Pano Therapeutics, Inc. and Medical Excellence Capital.
- Published
- 2023
- Full Text
- View/download PDF
9. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts.
- Author
-
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Soto Albrecht Y, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Zhang S, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Bram Y, Kidane Y, Priebe W, Emmett MR, Meller R, Demharter S, Stentoft-Hansen V, Salvatore M, Galeano D, Enguita FJ, Grabham P, Trovao NS, Singh U, Haltom J, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, and Wallace DC
- Subjects
- Cricetinae, Humans, Animals, Mice, SARS-CoV-2, Rodentia, Genes, Mitochondrial, Lung pathology, COVID-19 pathology
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.
- Published
- 2023
- Full Text
- View/download PDF
10. A comprehensive SARS-CoV-2 and COVID-19 review, Part 1: Intracellular overdrive for SARS-CoV-2 infection.
- Author
-
Jamison DA Jr, Anand Narayanan S, Trovão NS, Guarnieri JW, Topper MJ, Moraes-Vieira PM, Zaksas V, Singh KK, Wurtele ES, and Beheshti A
- Subjects
- Humans, Virus Replication, COVID-19, SARS-CoV-2
- Abstract
COVID-19, the disease caused by SARS-CoV-2, has claimed approximately 5 million lives and 257 million cases reported globally. This virus and disease have significantly affected people worldwide, whether directly and/or indirectly, with a virulent pathogen that continues to evolve as we race to learn how to prevent, control, or cure COVID-19. The focus of this review is on the SARS-CoV-2 virus' mechanism of infection and its proclivity at adapting and restructuring the intracellular environment to support viral replication. We highlight current knowledge and how scientific communities with expertize in viral, cellular, and clinical biology have contributed to increase our understanding of SARS-CoV-2, and how these findings may help explain the widely varied clinical observations of COVID-19 patients., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
11. The interplay between lncRNAs, RNA-binding proteins and viral genome during SARS-CoV-2 infection reveals strong connections with regulatory events involved in RNA metabolism and immune response.
- Author
-
Enguita FJ, Leitão AL, McDonald JT, Zaksas V, Das S, Galeano D, Taylor D, Wurtele ES, Saravia-Butler A, Baylin SB, Meller R, Porterfield DM, Wallace DC, Schisler JC, Mason CE, and Beheshti A
- Subjects
- Fragile X Mental Retardation Protein, Genome, Viral, Humans, Immunity, Mitochondrial Proteins metabolism, RNA, Untranslated genetics, RNA-Binding Proteins genetics, RNA-Binding Proteins metabolism, SARS-CoV-2 genetics, Thiolester Hydrolases metabolism, COVID-19 genetics, RNA, Long Noncoding genetics, RNA, Long Noncoding metabolism
- Abstract
Rationale: Viral infections are complex processes based on an intricate network of molecular interactions. The infectious agent hijacks components of the cellular machinery for its profit, circumventing the natural defense mechanisms triggered by the infected cell. The successful completion of the replicative viral cycle within a cell depends on the function of viral components versus the cellular defenses. Non-coding RNAs (ncRNAs) are important cellular modulators, either promoting or preventing the progression of viral infections. Among these ncRNAs, the long non-coding RNA (lncRNA) family is especially relevant due to their intrinsic functional properties and ubiquitous biological roles. Specific lncRNAs have been recently characterized as modulators of the cellular response during infection of human host cells by single stranded RNA viruses. However, the role of host lncRNAs in the infection by human RNA coronaviruses such as SARS-CoV-2 remains uncharacterized. Methods: In the present work, we have performed a transcriptomic study of a cohort of patients with different SARS-CoV-2 viral load and analyzed the involvement of lncRNAs in supporting regulatory networks based on their interaction with RNA-binding proteins (RBPs). Results: Our results revealed the existence of a SARS-CoV-2 infection-dependent pattern of transcriptional up-regulation in which specific lncRNAs are an integral component. To determine the role of these lncRNAs, we performed a functional correlation analysis complemented with the study of the validated interactions between lncRNAs and RBPs. This combination of in silico functional association studies and experimental evidence allowed us to identify a lncRNA signature composed of six elements - NRIR, BISPR, MIR155HG, FMR1-IT1, USP30-AS1, and U62317.2 - associated with the regulation of SARS-CoV-2 infection. Conclusions: We propose a competition mechanism between the viral RNA genome and the regulatory lncRNAs in the sequestering of specific RBPs that modulates the interferon response and the regulation of RNA surveillance by nonsense-mediated decay (NMD)., Competing Interests: Competing Interests: The authors have declared that no competing interest exists., (© The author(s).)
- Published
- 2022
- Full Text
- View/download PDF
12. Foster thy young: enhanced prediction of orphan genes in assembled genomes.
- Author
-
Li J, Singh U, Bhandary P, Campbell J, Arendsee Z, Seetharam AS, and Wurtele ES
- Subjects
- Genome, RNA-Seq, Software, Arabidopsis genetics, Oryza genetics
- Abstract
Proteins encoded by newly-emerged genes ('orphan genes') share no sequence similarity with proteins in any other species. They provide organisms with a reservoir of genetic elements to quickly respond to changing selection pressures. Here, we systematically assess the ability of five gene prediction pipelines to accurately predict genes in genomes according to phylostratal origin. BRAKER and MAKER are existing, popular ab initio tools that infer gene structures by machine learning. Direct Inference is an evidence-based pipeline we developed to predict gene structures from alignments of RNA-Seq data. The BIND pipeline integrates ab initio predictions of BRAKER and Direct inference; MIND combines Direct Inference and MAKER predictions. We use highly-curated Arabidopsis and yeast annotations as gold-standard benchmarks, and cross-validate in rice. Each pipeline under-predicts orphan genes (as few as 11 percent, under one prediction scenario). Increasing RNA-Seq diversity greatly improves prediction efficacy. The combined methods (BIND and MIND) yield best predictions overall, BIND identifying 68% of annotated orphan genes, 99% of ancient genes, and give the highest sensitivity score regardless dataset in Arabidopsis. We provide a light weight, flexible, reproducible, and well-documented solution to improve gene prediction., (© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2022
- Full Text
- View/download PDF
13. TARGETED DOWN REGULATION OF CORE MITOCHONDRIAL GENES DURING SARS-COV-2 INFECTION.
- Author
-
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Albrecht YS, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Kidane YH, Priebe W, Emmett MR, Meller R, Singh U, Bram Y, tenOever BR, Heise MT, Moorman NJ, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baxter VK, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, and Wallace DC
- Abstract
Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19.
- Published
- 2022
- Full Text
- View/download PDF
14. System-wide transcriptome damage and tissue identity loss in COVID-19 patients.
- Author
-
Park J, Foox J, Hether T, Danko DC, Warren S, Kim Y, Reeves J, Butler DJ, Mozsary C, Rosiene J, Shaiber A, Afshin EE, MacKay M, Rendeiro AF, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AM, Hajirasouliha I, Beheshti A, Taylor D, Saravia-Butler A, Singh U, Wurtele ES, Schisler J, Fennessey S, Corvelo A, Zody MC, Germer S, Salvatore S, Levy S, Wu S, Tatonetti NP, Shapira S, Salvatore M, Westblade LF, Cushing M, Rennert H, Kriegel AJ, Elemento O, Imielinski M, Rice CM, Borczuk AC, Meydan C, Schwartz RE, and Mason CE
- Subjects
- Adult, Aged, Aged, 80 and over, COVID-19 metabolism, COVID-19 virology, Case-Control Studies, Cohort Studies, Female, Gene Expression Regulation, Humans, Influenza, Human genetics, Influenza, Human pathology, Influenza, Human virology, Lung metabolism, Male, Middle Aged, Orthomyxoviridae, RNA-Seq methods, Respiratory Distress Syndrome genetics, Respiratory Distress Syndrome microbiology, Respiratory Distress Syndrome pathology, Viral Load, COVID-19 genetics, COVID-19 pathology, Lung pathology, SARS-CoV-2, Transcriptome genetics
- Abstract
The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections., Competing Interests: O.E. is scientific adviser and equity holder in Freenome, Owkin, Volastra Therapeutics, and OneThree Biotech. R.E.S. is on the scientific advisory board of Miromatrix, Inc., and is a consultant and speaker for Alnylam, Inc. L.S. is a scientific co-founder and paid consultant. C.M. and E.E.A. are consultants for Onegevity Health. C.E.M. is a co-founder of Biotia and Onegevity Health and an advisor to Nanostring. T.H., S.W., Y.K., and J.R. are employees of Nanostring, Inc. All other authors declare no competing interests., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
15. Role of miR-2392 in driving SARS-CoV-2 infection.
- Author
-
McDonald JT, Enguita FJ, Taylor D, Griffin RJ, Priebe W, Emmett MR, Sajadi MM, Harris AD, Clement J, Dybas JM, Aykin-Burns N, Guarnieri JW, Singh LN, Grabham P, Baylin SB, Yousey A, Pearson AN, Corry PM, Saravia-Butler A, Aunins TR, Sharma S, Nagpal P, Meydan C, Foox J, Mozsary C, Cerqueira B, Zaksas V, Singh U, Wurtele ES, Costes SV, Davanzo GG, Galeano D, Paccanaro A, Meinig SL, Hagan RS, Bowman NM, Wolfgang MC, Altinok S, Sapoval N, Treangen TJ, Moraes-Vieira PM, Vanderburg C, Wallace DC, Schisler JC, Mason CE, Chatterjee A, Meller R, and Beheshti A
- Subjects
- Adult, Aged, Aged, 80 and over, Animals, Antiviral Agents pharmacology, Biomarkers metabolism, Cricetinae, Female, Ferrets, Gene Expression Regulation, Glycolysis, Healthy Volunteers, Humans, Hypoxia, Inflammation, Male, Mice, Middle Aged, Proteomics methods, ROC Curve, Rats, COVID-19 Drug Treatment, COVID-19 genetics, COVID-19 immunology, MicroRNAs genetics, SARS-CoV-2 genetics
- Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans., Competing Interests: Declaration of interests A.C., P.N., S.V.C., and A.B. have a provisional patent based on the antiviral discovery and design. A.C., P.N., and S.S. are part of the company (Sachi Bioworks Inc.) that has filed a patent on the Nanoligomer technology., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
16. orfipy: a fast and flexible tool for extracting ORFs.
- Author
-
Singh U and Wurtele ES
- Subjects
- Open Reading Frames, Genome, Transcriptome, Genomics, Software
- Abstract
Summary: Searching for open reading frames is a routine task and a critical step prior to annotating protein coding regions in newly sequenced genomes or de novo transcriptome assemblies. With the tremendous increase in genomic and transcriptomic data, faster tools are needed to handle large input datasets. These tools should be versatile enough to fine-tune search criteria and allow efficient downstream analysis. Here we present a new python based tool, orfipy, which allows the user to flexibly search for open reading frames in genomic and transcriptomic sequences. The search is rapid and is fully customizable, with a choice of FASTA and BED output formats., Availability and Implementation: orfipy is implemented in python and is compatible with python v3.6 and higher. Source code: https://github.com/urmi-21/orfipy. Installation: from the source, or via PyPi (https://pypi.org/project/orfipy) or bioconda (https://anaconda.org/bioconda/orfipy)., Supplementary Information: Supplementary data are available at Bioinformatics online., (© The Author(s) 2021. Published by Oxford University Press.)
- Published
- 2021
- Full Text
- View/download PDF
17. The Great Deceiver: miR-2392's Hidden Role in Driving SARS-CoV-2 Infection.
- Author
-
McDonald JT, Enguita FJ, Taylor D, Griffin RJ, Priebe W, Emmett MR, Sajadi MM, Harris AD, Clement J, Dybas JM, Aykin-Burns N, Guarnieri JW, Singh LN, Grabham P, Baylin SB, Yousey A, Pearson AN, Corry PM, Saravia-Butler A, Aunins TR, Sharma S, Nagpal P, Meydan C, Foox J, Mozsary C, Cerqueira B, Zaksas V, Singh U, Wurtele ES, Costes SV, Davanzo GG, Galeano D, Paccanaro A, Meinig SL, Hagan RS, Bowman NM, Wolfgang MC, Altinok S, Sapoval N, Treangen TJ, Moraes-Vieira PM, Vanderburg C, Wallace DC, Schisler J, Mason CE, Chatterjee A, Meller R, and Beheshti A
- Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of COVID-19 positive patients, but not detected in COVID-19 negative patients. These findings indicate the potential for developing a novel, minimally invasive, COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we have developed a novel miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.
- Published
- 2021
- Full Text
- View/download PDF
18. Landscape of the Dark Transcriptome Revealed Through Re-mining Massive RNA-Seq Data.
- Author
-
Li J, Singh U, Arendsee Z, and Wurtele ES
- Abstract
The "dark transcriptome" can be considered the multitude of sequences that are transcribed but not annotated as genes. We evaluated expression of 6,692 annotated genes and 29,354 unannotated open reading frames (ORFs) in the Saccharomyces cerevisiae genome across diverse environmental, genetic and developmental conditions (3,457 RNA-Seq samples). Over 30% of the highly transcribed ORFs have translation evidence. Phylostratigraphic analysis infers most of these transcribed ORFs would encode species-specific proteins ("orphan-ORFs"); hundreds have mean expression comparable to annotated genes. These data reveal unannotated ORFs most likely to be protein-coding genes. We partitioned a co-expression matrix by Markov Chain Clustering; the resultant clusters contain 2,468 orphan-ORFs. We provide the aggregated RNA-Seq yeast data with extensive metadata as a project in MetaOmGraph (MOG), a tool designed for interactive analysis and visualization. This approach enables reuse of public RNA-Seq data for exploratory discovery, providing a rich context for experimentalists to make novel, experimentally testable hypotheses about candidate genes., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Li, Singh, Arendsee and Wurtele.)
- Published
- 2021
- Full Text
- View/download PDF
19. pyrpipe: a Python package for RNA-Seq workflows.
- Author
-
Singh U, Li J, Seetharam A, and Wurtele ES
- Abstract
The availability of terabytes of RNA-Seq data and continuous emergence of new analysis tools, enable unprecedented biological insight. There is a pressing requirement for a framework that allows for fast, efficient, manageable, and reproducible RNA-Seq analysis. We have developed a Python package, (pyrpipe), that enables straightforward development of flexible, reproducible and easy-to-debug computational pipelines purely in Python, in an object-oriented manner. pyrpipe provides access to popular RNA-Seq tools, within Python, via high-level APIs. Pipelines can be customized by integrating new Python code, third-party programs, or Python libraries. Users can create checkpoints in the pipeline or integrate pyrpipe into a workflow management system, thus allowing execution on multiple computing environments, and enabling efficient resource management. pyrpipe produces detailed analysis, and benchmark reports which can be shared or included in publications. pyrpipe is implemented in Python and is compatible with Python versions 3.6 and higher. To illustrate the rich functionality of pyrpipe, we provide case studies using RNA-Seq data from GTEx, SARS-CoV-2-infected human cells, and Zea mays . All source code is freely available at https://github.com/urmi-21/pyrpipe; the package can be installed from the source, from PyPI (https://pypi.org/project/pyrpipe), or from bioconda (https://anaconda.org/bioconda/pyrpipe). Documentation is available at (http://pyrpipe.rtfd.io)., (© The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.)
- Published
- 2021
- Full Text
- View/download PDF
20. African Americans and European Americans exhibit distinct gene expression patterns across tissues and tumors associated with immunologic functions and environmental exposures.
- Author
-
Singh U, Hernandez KM, Aronow BJ, and Wurtele ES
- Subjects
- COVID-19 epidemiology, COVID-19 virology, Chemokine CCL3 genetics, Gene Regulatory Networks, Glutathione Transferase genetics, Humans, Neoplasms classification, Neoplasms ethnology, Nuclear Proteins genetics, Pandemics, Prognosis, RNA-Seq methods, SARS-CoV-2 isolation & purification, SARS-CoV-2 physiology, Socioeconomic Factors, United States epidemiology, Black or African American genetics, COVID-19 genetics, Gene Expression Profiling methods, Gene Expression Regulation, Neoplastic, Neoplasms genetics, White People genetics
- Abstract
The COVID-19 pandemic has affected African American populations disproportionately with respect to prevalence, and mortality. Expression profiles represent snapshots of combined genetic, socio-environmental (including socioeconomic and environmental factors), and physiological effects on the molecular phenotype. As such, they have potential to improve biological understanding of differences among populations, and provide therapeutic biomarkers and environmental mitigation strategies. Here, we undertook a large-scale assessment of patterns of gene expression between African Americans and European Americans, mining RNA-Seq data from 25 non-diseased and diseased (tumor) tissue-types. We observed the widespread enrichment of pathways implicated in COVID-19 and integral to inflammation and reactive oxygen stress. Chemokine CCL3L3 expression is up-regulated in African Americans. GSTM1, encoding a glutathione S-transferase that metabolizes reactive oxygen species and xenobiotics, is upregulated. The little-studied F8A2 gene is up to 40-fold more highly expressed in African Americans; F8A2 encodes HAP40 protein, which mediates endosome movement, potentially altering the cellular response to SARS-CoV-2. African American expression signatures, superimposed on single cell-RNA reference data, reveal increased number or activity of esophageal glandular cells and lung ACE2-positive basal keratinocytes. Our findings establish basal prognostic signatures that can be used to refine approaches to minimize risk of severe infection and improve precision treatment of COVID-19 for African Americans. To enable dissection of causes of divergent molecular phenotypes, we advocate routine inclusion of metadata on genomic and socio-environmental factors for human RNA-sequencing studies.
- Published
- 2021
- Full Text
- View/download PDF
21. Systemic Tissue and Cellular Disruption from SARS-CoV-2 Infection revealed in COVID-19 Autopsies and Spatial Omics Tissue Maps.
- Author
-
Park J, Foox J, Hether T, Danko D, Warren S, Kim Y, Reeves J, Butler DJ, Mozsary C, Rosiene J, Shaiber A, Afshinnekoo E, MacKay M, Bram Y, Chandar V, Geiger H, Craney A, Velu P, Melnick AM, Hajirasouliha I, Beheshti A, Taylor D, Saravia-Butler A, Singh U, Wurtele ES, Schisler J, Fennessey S, Corvelo A, Zody MC, Germer S, Salvatore S, Levy S, Wu S, Tatonetti N, Shapira S, Salvatore M, Loda M, Westblade LF, Cushing M, Rennert H, Kriegel AJ, Elemento O, Imielinski M, Borczuk AC, Meydan C, Schwartz RE, and Mason CE
- Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, evident as a function of varying viral load (high vs. low) during the course of infection and specific, transcriptional dysregulation in splicing isoforms, T cell receptor expression, and cellular expression states. In particular, cardiac and lung tissues revealed the largest degree of splicing isoform switching and cell expression state loss. Overall, these findings reveal a systemic disruption of cellular and transcriptional pathways from COVID-19 across all tissues, which can inform subsequent studies to combat the mortality of COVID-19, as well to better understand the molecular dynamics of lethal SARS-CoV-2 infection and other viruses.
- Published
- 2021
- Full Text
- View/download PDF
22. MetaOmGraph: a workbench for interactive exploratory data analysis of large expression datasets.
- Author
-
Singh U, Hur M, Dorman K, and Wurtele ES
- Subjects
- Data Analysis, Data Interpretation, Statistical, Humans, Metadata statistics & numerical data, Big Data, Gene Expression Profiling statistics & numerical data, Gene Expression Regulation genetics, Software
- Abstract
The diverse and growing omics data in public domains provide researchers with tremendous opportunity to extract hidden, yet undiscovered, knowledge. However, the vast majority of archived data remain unused. Here, we present MetaOmGraph (MOG), a free, open-source, standalone software for exploratory analysis of massive datasets. Researchers, without coding, can interactively visualize and evaluate data in the context of its metadata, honing-in on groups of samples or genes based on attributes such as expression values, statistical associations, metadata terms and ontology annotations. Interaction with data is easy via interactive visualizations such as line charts, box plots, scatter plots, histograms and volcano plots. Statistical analyses include co-expression analysis, differential expression analysis and differential correlation analysis, with significance tests. Researchers can send data subsets to R for additional analyses. Multithreading and indexing enable efficient big data analysis. A researcher can create new MOG projects from any numerical data; or explore an existing MOG project. MOG projects, with history of explorations, can be saved and shared. We illustrate MOG by case studies of large curated datasets from human cancer RNA-Seq, where we identify novel putative biomarker genes in different tumors, and microarray and metabolomics data from Arabidopsis thaliana. MOG executable and code: http://metnetweb.gdcb.iastate.edu/ and https://github.com/urmi-21/MetaOmGraph/., (© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2020
- Full Text
- View/download PDF
23. phylostratr: a framework for phylostratigraphy.
- Author
-
Arendsee Z, Li J, Singh U, Seetharam A, Dorman K, and Wurtele ES
- Subjects
- Genome, Saccharomyces cerevisiae, Algorithms, Phylogeny, Software
- Abstract
Motivation: The goal of phylostratigraphy is to infer the evolutionary origin of each gene in an organism. This is done by searching for homologs within increasingly broad clades. The deepest clade that contains a homolog of the protein(s) encoded by a gene is that gene's phylostratum., Results: We have created a general R-based framework, phylostratr, to estimate the phylostratum of every gene in a species. The program fully automates analysis: selecting species for balanced representation, retrieving sequences, building databases, inferring phylostrata and returning diagnostics. Key diagnostics include: detection of genes with inferred homologs in old clades, but not intermediate ones; proteome quality assessments; false-positive diagnostics, and checks for missing organellar genomes. phylostratr allows extensive customization and systematic comparisons of the influence of analysis parameters or genomes on phylostrata inference. A user may: modify the automatically generated clade tree or use their own tree; provide custom sequences in place of those automatically retrieved from UniProt; replace BLAST with an alternative algorithm; or tailor the method and sensitivity of the homology inference classifier. We show the utility of phylostratr through case studies in Arabidopsis thaliana and Saccharomyces cerevisiae., Availability and Implementation: Source code available at https://github.com/arendsee/phylostratr., Supplementary Information: Supplementary data are available at Bioinformatics online., (© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
24. fagin: synteny-based phylostratigraphy and finer classification of young genes.
- Author
-
Arendsee Z, Li J, Singh U, Bhandary P, Seetharam A, and Wurtele ES
- Subjects
- Base Sequence, Genome, Sequence Homology, Arabidopsis genetics, Genes, Phylogeny, Saccharomyces cerevisiae genetics, Software, Synteny genetics
- Abstract
Background: With every new genome that is sequenced, thousands of species-specific genes (orphans) are found, some originating from ultra-rapid mutations of existing genes, many others originating de novo from non-genic regions of the genome. If some of these genes survive across speciations, then extant organisms will contain a patchwork of genes whose ancestors first appeared at different times. Standard phylostratigraphy, the technique of partitioning genes by their age, is based solely on protein similarity algorithms. However, this approach relies on negative evidence ─ a failure to detect a homolog of a query gene. An alternative approach is to limit the search for homologs to syntenic regions. Then, genes can be positively identified as de novo orphans by tracing them to non-coding sequences in related species., Results: We have developed a synteny-based pipeline in the R framework. Fagin determines the genomic context of each query gene in a focal species compared to homologous sequence in target species. We tested the fagin pipeline on two focal species, Arabidopsis thaliana (plus four target species in Brassicaseae) and Saccharomyces cerevisiae (plus six target species in Saccharomyces). Using microsynteny maps, fagin classified the homology relationship of each query gene against each target genome into three main classes, and further subclasses: AAic (has a coding syntenic homolog), NTic (has a non-coding syntenic homolog), and Unknown (has no detected syntenic homolog). fagin inferred over half the "Unknown" A. thaliana query genes, and about 20% for S. cerevisiae, as lacking a syntenic homolog because of local indels or scrambled synteny., Conclusions: fagin augments standard phylostratigraphy, and extends synteny-based phylostratigraphy with an automated, customizable, and detailed contextual analysis. By comparing synteny-based phylostrata to standard phylostrata, fagin systematically identifies those orphans and lineage-specific genes that are well-supported to have originated de novo. Analyzing within-species genomes should distinguish orphan genes that may have originated through rapid divergence from de novo orphans. Fagin also delineates whether a gene has no syntenic homolog because of technical or biological reasons. These analyses indicate that some orphans may be associated with regions of high genomic perturbation.
- Published
- 2019
- Full Text
- View/download PDF
25. QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens and pests.
- Author
-
Qi M, Zheng W, Zhao X, Hohenstein JD, Kandel Y, O'Conner S, Wang Y, Du C, Nettleton D, MacIntosh GC, Tylka GL, Wurtele ES, Whitham SA, and Li L
- Subjects
- Arabidopsis Proteins physiology, Herbivory, Plant Diseases immunology, Plant Diseases microbiology, Plant Immunity genetics, Plants, Genetically Modified genetics, Plants, Genetically Modified physiology, Glycine max genetics, Glycine max physiology, Transcription Factors physiology, Arabidopsis Proteins genetics, Disease Resistance genetics, Transcription Factors genetics
- Abstract
Enhancing the nutritional quality and disease resistance of crops without sacrificing productivity is a key issue for developing varieties that are valuable to farmers and for simultaneously improving food security and sustainability. Expression of the Arabidopsis thaliana species-specific AtQQS (Qua-Quine Starch) orphan gene or its interactor, NF-YC4 (Nuclear Factor Y, subunit C4), has been shown to increase levels of leaf/seed protein without affecting the growth and yield of agronomic species. Here, we demonstrate that overexpression of AtQQS and NF-YC4 in Arabidopsis and soybean enhances resistance/reduces susceptibility to viruses, bacteria, fungi, aphids and soybean cyst nematodes. A series of Arabidopsis mutants in starch metabolism were used to explore the relationships between QQS expression, carbon and nitrogen partitioning, and defense. The enhanced basal defenses mediated by QQS were independent of changes in protein/carbohydrate composition of the plants. We demonstrate that either AtQQS or NF-YC4 overexpression in Arabidopsis and in soybean reduces susceptibility of these plants to pathogens/pests. Transgenic soybean lines overexpressing NF-YC4 produce seeds with increased protein while maintaining healthy growth. Pull-down studies reveal that QQS interacts with human NF-YC, as well as with Arabidopsis NF-YC4, and indicate two QQS binding sites near the NF-YC-histone-binding domain. A new model for QQS interaction with NF-YC is speculated. Our findings illustrate the potential of QQS and NF-YC4 to increase protein and improve defensive traits in crops, overcoming the normal growth-defense trade-offs., (© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
26. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations.
- Author
-
Reem NT, Chen HY, Hur M, Zhao X, Wurtele ES, Li X, Li L, and Zabotina O
- Subjects
- Hydrolases metabolism, Plants, Genetically Modified, Reproducibility of Results, Stress, Physiological genetics, Transcription Factors metabolism, Transcriptome genetics, Arabidopsis genetics, Cell Wall metabolism, Gene Expression Profiling, Gene Expression Regulation, Plant, Metabolome genetics
- Abstract
Key Message: This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.
- Published
- 2018
- Full Text
- View/download PDF
27. Raising orphans from a metadata morass: A researcher's guide to re-use of public 'omics data.
- Author
-
Bhandary P, Seetharam AS, Arendsee ZW, Hur M, and Wurtele ES
- Subjects
- Base Sequence, Databases, Factual statistics & numerical data, Metadata statistics & numerical data, Plant Proteins genetics, RNA, Messenger genetics, Zea mays genetics
- Abstract
More than 15 petabases of raw RNAseq data is now accessible through public repositories. Acquisition of other 'omics data types is expanding, though most lack a centralized archival repository. Data-reuse provides tremendous opportunity to extract new knowledge from existing experiments, and offers a unique opportunity for robust, multi-'omics analyses by merging metadata (information about experimental design, biological samples, protocols) and data from multiple experiments. We illustrate how predictive research can be accelerated by meta-analysis with a study of orphan (species-specific) genes. Computational predictions are critical to infer orphan function because their coding sequences provide very few clues. The metadata in public databases is often confusing; a test case with Zea mays mRNA seq data reveals a high proportion of missing, misleading or incomplete metadata. This metadata morass significantly diminishes the insight that can be extracted from these data. We provide tips for data submitters and users, including specific recommendations to improve metadata quality by more use of controlled vocabulary and by metadata reviews. Finally, we advocate for a unified, straightforward metadata submission and retrieval system., (Copyright © 2017 Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
28. Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones.
- Author
-
Tong Z, Wang D, Sun Y, Yang Q, Meng X, Wang L, Feng W, Li L, Wurtele ES, and Wang X
- Subjects
- Hevea metabolism, Plant Proteins genetics, Proteome genetics, Ethylenes pharmacology, Hevea drug effects, Latex biosynthesis, Plant Proteins metabolism, Proteome metabolism
- Abstract
Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF
138,175,258 and SRPP117,204,243 , were characterized from Hevea brasiliensis Reyan (RY) 7-33-97. Sequence analysis showed that REFs have a variable and long N-terminal, whereas SRPPs have a variable and long C-terminal beyond the REF domain, and REF258 has a β subunit of ATPase in its N-terminal. Through two-dimensional electrophoresis (2-DE), each REF/SRPP protein was separated into multiple protein spots on 2-DE gels, indicating they have multiple protein species. The abundance of REF/SRPP proteins was compared between ethylene and control treatments or among rubber tree clones with different levels of latex productivity by analyzing 2-DE gels. The total abundance of each REF/SRPP protein decreased or changed a little upon ethylene stimulation, whereas the abundance of multiple protein species of the same REF/SRPP changed diversely. Among the three rubber tree clones, the abundance of the protein species also differed significantly. Especially, two protein species of REF175 or REF258 were ethylene-responsive only in the high latex productivity clone RY 8-79 instead of in RY 7-33-97 and PR 107. Some individual protein species were positively related to ethylene stimulation and latex productivity. These results suggested that the specific protein species could be more important than others for rubber production and post-translational modifications might play important roles in rubber biosynthesis.- Published
- 2017
- Full Text
- View/download PDF
29. Identification and functional characterization of HbOsmotin from Hevea brasiliensis.
- Author
-
Tong Z, Sun Y, Wang D, Wang L, Li L, Meng X, Feng W, Wurtele ES, and Wang X
- Subjects
- Amino Acid Sequence, Arabidopsis genetics, Arabidopsis metabolism, Blotting, Western, Cloning, Molecular, Ethylenes pharmacology, Gene Expression Regulation, Plant drug effects, Hevea metabolism, Microscopy, Confocal, Osmotic Pressure, Phylogeny, Plant Growth Regulators pharmacology, Plant Proteins classification, Plant Proteins metabolism, Plants, Genetically Modified, Reverse Transcriptase Polymerase Chain Reaction, Rubber metabolism, Sequence Homology, Amino Acid, Transcription, Genetic drug effects, Gene Expression Regulation, Plant genetics, Hevea genetics, Plant Proteins genetics, Transcription, Genetic genetics
- Abstract
Latex in the laticiferous cell network of Hevea brasiliensis tree is composed of cytoplasm that synthesizes natural rubber. Ethylene stimulation of the tree bark enhances latex production partly by prolonging the duration of latex flow during the tapping process. Here, we identified an osmotin-like cDNA sequence (HbOsmotin) from H. brasiliensis that belongs to the pathogenesis-related 5 (PR-5) gene family. The HbOsmotin protein is present in the lutoids of latex in H. brasiliensis, whereas in onion epidermal cells, this protein is predominantly distributed around the cell wall, suggesting that it may be secreted from the cytoplasm. We investigated the effects of exogenous ethylene on HbOsmotin transcription and protein accumulation in rubber latex, and further determined the protein function after osmotic stress in Arabidopsis. In regularly tapped trees, HbOsmotin expression was drastically inhibited in rubber latex after tapping, although the expression was subsequently recovered by ethylene stimulation. However, in virgin plants that had never been tapped, exogenous ethylene application slightly decreased HbOsmotin expression. HbOsmotin overexpression in Arabidopsis showed that HbOsmotin reduced the osmotic stress tolerance of the plant, which likely occurred by raising the water potential. These data indicated that HbOsmotin may contribute to osmotic regulation in laticiferous cells., (Copyright © 2016 Elsevier Masson SAS. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
30. Integrating metabolomics and transcriptomics data to discover a biocatalyst that can generate the amine precursors for alkamide biosynthesis.
- Author
-
Rizhsky L, Jin H, Shepard MR, Scott HW, Teitgen AM, Perera MA, Mhaske V, Jose A, Zheng X, Crispin M, Wurtele ES, Jones D, Hur M, Góngora-Castillo E, Buell CR, Minto RE, and Nikolau BJ
- Subjects
- Biocatalysis, Fatty Acids metabolism, Amides metabolism, Echinacea genetics, Echinacea metabolism, Metabolomics methods, Transcriptome genetics
- Abstract
The Echinacea genus is exemplary of over 30 plant families that produce a set of bioactive amides, called alkamides. The Echinacea alkamides may be assembled from two distinct moieties, a branched-chain amine that is acylated with a novel polyunsaturated fatty acid. In this study we identified the potential enzymological source of the amine moiety as a pyridoxal phosphate-dependent decarboxylating enzyme that uses branched-chain amino acids as substrate. This identification was based on a correlative analysis of the transcriptomes and metabolomes of 36 different E. purpurea tissues and organs, which expressed distinct alkamide profiles. Although no correlation was found between the accumulation patterns of the alkamides and their putative metabolic precursors (i.e., fatty acids and branched-chain amino acids), isotope labeling analyses supported the transformation of valine and isoleucine to isobutylamine and 2-methylbutylamine as reactions of alkamide biosynthesis. Sequence homology identified the pyridoxal phosphate-dependent decarboxylase-like proteins in the translated proteome of E. purpurea. These sequences were prioritized for direct characterization by correlating their transcript levels with alkamide accumulation patterns in different organs and tissues, and this multi-pronged approach led to the identification and characterization of a branched-chain amino acid decarboxylase, which would appear to be responsible for generating the amine moieties of naturally occurring alkamides., (© 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
31. A Clade-Specific Arabidopsis Gene Connects Primary Metabolism and Senescence.
- Author
-
Jones DC, Zheng W, Huang S, Du C, Zhao X, Yennamalli RM, Sen TZ, Nettleton D, Wurtele ES, and Li L
- Abstract
Nearly immobile, plants have evolved new components to be able to respond to changing environments. One example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific orphan gene that integrates primary metabolism with adaptation to environment changes. SAQR (Senescence-Associated and QQS-Related, AT1G64360), is unique to a clade within the family Brassicaceae; as such, the gene may have arisen about 20 million years ago. SAQR is up-regulated in QQS RNAi mutant and in the apx1 mutant under light-induced oxidative stress. SAQR plays a role in carbon allocation: overexpression lines of SAQR have significantly decreased starch content; conversely, in a saqr T-DNA knockout (KO) line, starch accumulation is increased. Meta-analysis of public microarray data indicates that SAQR expression is correlated with expression of a subset of genes involved in senescence, defense, and stress responses. SAQR promoter::GUS expression analysis reveals that SAQR expression increases after leaf expansion and photosynthetic capacity have peaked, just prior to visible natural senescence. SAQR is expressed predominantly within leaf and cotyledon vasculature, increasing in intensity as natural senescence continues, and then decreasing prior to death. In contrast, under experimentally induced senescence, SAQR expression increases in vasculature of cotyledons but not in true leaves. In SAQR KO line, the transcript level of the dirigent-like disease resistance gene (AT1G22900) is increased, while that of the Early Light Induced Protein 1 gene (ELIP1, AT3G22840) is decreased. Taken together, these data indicate that SAQR may function in the QQS network, playing a role in integration of primary metabolism with adaptation to internal and environmental changes, specifically those that affect the process of senescence.
- Published
- 2016
- Full Text
- View/download PDF
32. Microbial Community and Chemical Characteristics of Swine Manure during Maturation.
- Author
-
Trabue SL, Kerr BJ, Bearson BL, Hur M, Parkin T, Wurtele ES, and Ziemer CJ
- Subjects
- Ammonia, Animal Feed, Animals, Diet, Feces, Swine, Manure, Odorants
- Abstract
Swine diet formulations have the potential to lower animal emissions, including odor and ammonia (NH). The purpose of this study was to determine the impact of manure storage duration on manure chemical and microbial properties in swine feeding trials. Three groups of 12 pigs were fed a standard corn-soybean meal diet over a 13-wk period. Urine and feces were collected at each feeding and transferred to 12 manure storage tanks. Manure chemical characteristics and headspace gas concentrations were monitored for NH, hydrogen sulfide (HS), volatile fatty acids, phenols, and indoles. Microbial analysis of the stored manure included plate counts, community structure (denaturing gradient gel electrophoresis), and metabolic function (Biolog). All odorants in manure and headspace gas concentrations were significantly ( < 0.01) correlated for length of storage using quadratic equations, peaking after Week 5 for all headspace gases and most manure chemical characteristics. Microbial community structure and metabolic utilization patterns showed continued change throughout the 13-wk trial. Denaturing gradient gel electrophoresis species diversity patterns declined significantly ( < 0.01) with time as substrate utilization declined for sugars and certain amino acids, but functionality increased in the utilization of short chain fatty acids as levels of these compounds increased in manure. Studies to assess the effect of swine diet formulations on manure emissions for odor need to be conducted for a minimum of 5 wk. Efforts to determine the impact of diets on greenhouse gas emissions will require longer periods of study (>13 wk)., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
33. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions.
- Author
-
Li L, Zheng W, Zhu Y, Ye H, Tang B, Arendsee ZW, Jones D, Li R, Ortiz D, Zhao X, Du C, Nettleton D, Scott MP, Salas-Fernandez MG, Yin Y, and Wurtele ES
- Subjects
- Arabidopsis genetics, Arabidopsis Proteins genetics, Gene Expression Regulation, Plant, Models, Biological, Mutation, Oryza genetics, Phenotype, Photosynthesis, Phylogeny, Plant Leaves physiology, Plants, Genetically Modified, Protein Binding, Protein Structure, Tertiary, Glycine max genetics, Glycine max growth & development, Species Specificity, Arabidopsis Proteins metabolism, Carbon metabolism, Genes, Plant, Nitrogen metabolism, Transcription Factors metabolism
- Abstract
The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.
- Published
- 2015
- Full Text
- View/download PDF
34. ArcA Controls Metabolism, Chemotaxis, and Motility Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli.
- Author
-
Jiang F, An C, Bao Y, Zhao X, Jernigan RL, Lithio A, Nettleton D, Li L, Wurtele ES, Nolan LK, Lu C, and Li G
- Subjects
- Animals, Ducks, Electrophoretic Mobility Shift Assay, Escherichia coli genetics, Molecular Sequence Data, Reverse Transcriptase Polymerase Chain Reaction, Bacterial Outer Membrane Proteins genetics, Chemotaxis, Escherichia coli pathogenicity, Escherichia coli Infections microbiology, Escherichia coli Proteins genetics, Repressor Proteins genetics
- Abstract
Avian pathogenic Escherichia coli (APEC) strains cause one of the three most significant infectious diseases in the poultry industry and are also potential food-borne pathogens threating human health. In this study, we showed that ArcA (aerobic respiratory control), a global regulator important for E. coli's adaptation from anaerobic to aerobic conditions and control of that bacterium's enzymatic defenses against reactive oxygen species (ROS), is involved in the virulence of APEC. Deletion of arcA significantly attenuates the virulence of APEC in the duck model. Transcriptome sequencing (RNA-Seq) analyses comparing the APEC wild type and the arcA mutant indicate that ArcA regulates the expression of 129 genes, including genes involved in citrate transport and metabolism, flagellum synthesis, and chemotaxis. Further investigations revealed that citCEFXG contributed to APEC's microaerobic growth at the lag and log phases when cultured in duck serum and that ArcA played a dual role in the control of citrate metabolism and transportation. In addition, deletion of flagellar genes motA and motB and chemotaxis gene cheA significantly attenuated the virulence of APEC, and ArcA was shown to directly regulate the expression of motA, motB, and cheA. The combined results indicate that ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of APEC., (Copyright © 2015, American Society for Microbiology. All Rights Reserved.)
- Published
- 2015
- Full Text
- View/download PDF
35. Patterns of metabolite changes identified from large-scale gene perturbations in Arabidopsis using a genome-scale metabolic network.
- Author
-
Kim T, Dreher K, Nilo-Poyanco R, Lee I, Fiehn O, Lange BM, Nikolau BJ, Sumner L, Welti R, Wurtele ES, and Rhee SY
- Subjects
- Metabolic Networks and Pathways, Mutation, Arabidopsis genetics, Arabidopsis metabolism, Arabidopsis Proteins genetics, Gene Expression Regulation, Plant, Genome, Plant genetics, Metabolome genetics, Metabolomics
- Abstract
Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes., (© 2015 American Society of Plant Biologists. All Rights Reserved.)
- Published
- 2015
- Full Text
- View/download PDF
36. The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean.
- Author
-
Li L and Wurtele ES
- Subjects
- Arabidopsis Proteins metabolism, Phenotype, Plant Leaves metabolism, Plants, Genetically Modified, Seeds metabolism, Starch metabolism, Arabidopsis genetics, Arabidopsis Proteins genetics, Carbon metabolism, Genes, Plant, Nitrogen metabolism, Glycine max genetics
- Abstract
The genome of each species contains as high as 8% of genes that are uniquely present in that species. Little is known about the functional significance of these so-called species specific or orphan genes. The Arabidopsis thaliana gene Qua-Quine Starch (QQS) is species specific. Here, we show that altering QQS expression in Arabidopsis affects carbon partitioning to both starch and protein. We hypothesized QQS may be conserved in a feature other than primary sequence, and as such could function to impact composition in another species. To test the potential of QQS in affecting composition in an ectopic species, we introduced QQS into soybean. Soybean T1 lines expressing QQS have up to 80% decreased leaf starch and up to 60% increased leaf protein; T4 generation seeds from field-grown plants contain up to 13% less oil, while protein is increased by up to 18%. These data broaden the concept of QQS as a modulator of carbon and nitrogen allocation, and demonstrate that this species-specific gene can affect the seed composition of an agronomic species thought to have diverged from Arabidopsis 100 million years ago., (© 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2015
- Full Text
- View/download PDF
37. Modifications of membrane lipids in response to wounding of Arabidopsis thaliana leaves.
- Author
-
Vu HS, Roston R, Shiva S, Hur M, Wurtele ES, Wang X, Shah J, and Welti R
- Subjects
- Acylation, Glycosylation, Oxidation-Reduction, Arabidopsis metabolism, Membrane Lipids metabolism, Plant Leaves metabolism
- Abstract
Mechanical wounding of Arabidopsis thaliana leaves results in modifications of most membrane lipids within 6 hours. Here, we discuss the lipid changes, their underlying biochemistry, and possible relationships among activated pathways. New evidence is presented supporting the role of the processive galactosylating enzyme SENSITIVE TO FREEZING2 in the wounding response.
- Published
- 2015
- Full Text
- View/download PDF
38. A systems biology approach toward understanding seed composition in soybean.
- Author
-
Li L, Hur M, Lee JY, Zhou W, Song Z, Ransom N, Demirkale CY, Nettleton D, Westgate M, Arendsee Z, Iyer V, Shanks J, Nikolau B, and Wurtele ES
- Subjects
- Gene Regulatory Networks, Metabolic Networks and Pathways, Seeds chemistry, Seeds embryology, Glycine max chemistry, Glycine max genetics, Transcription Factors genetics, Transcription Factors metabolism, Metabolomics statistics & numerical data, Seeds growth & development, Software, Glycine max metabolism, Systems Biology, Transcriptome
- Abstract
Background: The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks., Results: With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks., Conclusions: This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.
- Published
- 2015
- Full Text
- View/download PDF
39. Coming of age: orphan genes in plants.
- Author
-
Arendsee ZW, Li L, and Wurtele ES
- Subjects
- Animals, Genetic Phenomena, Reproduction, Species Specificity, Stress, Physiological, Genes, Plant
- Abstract
Sizable minorities of protein-coding genes from every sequenced eukaryotic and prokaryotic genome are unique to the species. These so-called ‘orphan genes’ may evolve de novo from non-coding sequence or be derived from older coding material. They are often associated with environmental stress responses and species-specific traits or regulatory patterns. However, difficulties in studying genes where comparative analysis is impossible, and a bias towards broadly conserved genes, have resulted in underappreciation of their importance. We review here the identification, possible origins, evolutionary trends, and functions of orphans with an emphasis on their role in plant biology. We exemplify several evolutionary trends with an analysis of Arabidopsis thaliana and present QQS as a model orphan gene.
- Published
- 2014
- Full Text
- View/download PDF
40. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis.
- Author
-
Fukushima A, Kusano M, Mejia RF, Iwasa M, Kobayashi M, Hayashi N, Watanabe-Takahashi A, Narisawa T, Tohge T, Hur M, Wurtele ES, Nikolau BJ, and Saito K
- Abstract
Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/., (© 2014 American Society of Plant Biologists. All Rights Reserved.)
- Published
- 2014
- Full Text
- View/download PDF
41. Automatic extraction of biomolecular interactions: an empirical approach.
- Author
-
Zhang L, Berleant D, Ding J, and Wurtele ES
- Subjects
- Algorithms, Databases, Factual, Data Mining methods, MEDLINE, Software
- Abstract
Background: We describe a method for extracting data about how biomolecule pairs interact from texts. This method relies on empirically determined characteristics of sentences. The characteristics are efficient to compute, making this approach to extraction of biomolecular interactions scalable. The results of such interaction mining can support interaction network annotation, question answering, database construction, and other applications., Results: We constructed a software system to search MEDLINE for sentences likely to describe interactions between given biomolecules. The system extracts a list of the interaction-indicating terms appearing in those sentences, then ranks those terms based on their likelihood of correctly characterizing how the biomolecules interact. The ranking process uses a tf-idf (term frequency-inverse document frequency) based technique using empirically derived knowledge about sentences, and was applied to the MEDLINE literature collection. Software was developed as part of the MetNet toolkit (http://www.metnetdb.org)., Conclusions: Specific, efficiently computable characteristics of sentences about biomolecular interactions were analyzed to better understand how to use these characteristics to extract how biomolecules interact.The text empirics method that was investigated, though arising from a classical tradition, has yet to be fully explored for the task of extracting biomolecular interactions from the literature. The conclusions we reach about the sentence characteristics investigated in this work, as well as the technique itself, could be used by other systems to provide evidence about putative interactions, thus supporting efforts to maximize the ability of hybrid systems to support such tasks as annotating and constructing interaction networks.
- Published
- 2013
- Full Text
- View/download PDF
42. Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data.
- Author
-
Almeida-de-Macedo MM, Ransom N, Feng Y, Hurst J, and Wurtele ES
- Subjects
- Computer Simulation, Female, Gene Expression Profiling methods, Gene Expression Profiling statistics & numerical data, Genetics, Population methods, Humans, Male, Meta-Analysis as Topic, Models, Theoretical, Research Design, Oligonucleotide Array Sequence Analysis methods, Oligonucleotide Array Sequence Analysis statistics & numerical data
- Abstract
Background: The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach., Results: We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N > 2 groups., Conclusions: The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies.
- Published
- 2013
- Full Text
- View/download PDF
43. Identification and biosynthesis of acylphloroglucinols in Hypericum gentianoides.
- Author
-
Crispin MC, Hur M, Park T, Kim YH, and Wurtele ES
- Subjects
- Biosynthetic Pathways, Chromatography, Liquid, Ecotype, Hypericum growth & development, Ions, Phloroglucinol chemistry, Phloroglucinol isolation & purification, Plant Extracts metabolism, Spectrometry, Mass, Electrospray Ionization, Hypericum metabolism, Phloroglucinol metabolism
- Abstract
Species of the genus Hypericum contain a rich array of unusual polyketides, however, only a small proportion of the over 450 Hypericum species, other than the popular medicinal supplement St. John's Wort (Hypericum perforatum), have even been chemically characterized. Hypericum gentianoides, a small annual used medicinally by Cherokee Americans, contains bioactive acylphloroglucinols. Here, we identify acylphloroglucinol constituents of H. gentianoides and determine a potential pathway to their synthesis. Liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) and HPLC-UV indicate that the level of accumulation and profile of acylphloroglucinols in H. gentianoides vary little seasonally when grown in a greenhouse, but do vary with development and are highly dependent on the accession, highlighting the importance of the selection of plant material for study. We identify the chemical structures of the nine prevalent polyketides, based on LC/ESI-MS and hybrid quadrupole orthogonal time-of-flight (Q-TOF) mass spectrometry; these metabolites include one monomeric phlorisobutyrophenone (PIB) derivative and eight dimeric acylphloroglucinols. Q-TOF spectrometry was used to identify eight additional PIB derivatives that were not detected by LC/ESI-MS. These data lead us to propose that diacylphloroglucinols are synthesized via modification of PIB to yield diverse phloroglucinol and filicinic acids moieties, followed by dimerization of a phloroglucinol and a filicinic acid monomer to yield the observed complement of diacylphloroglucinols. The metabolomics data from H. gentianoides are accessible in plant metabolomics resource (PMR) (http://www.metnetdb.org/pmr), a public metabolomics database with analysis software for plants and microbial organisms., (© 2013 Scandinavian Plant Physiology Society.)
- Published
- 2013
- Full Text
- View/download PDF
44. A global approach to analysis and interpretation of metabolic data for plant natural product discovery.
- Author
-
Hur M, Campbell AA, Almeida-de-Macedo M, Li L, Ransom N, Jose A, Crispin M, Nikolau BJ, and Wurtele ES
- Subjects
- Arabidopsis genetics, Arabidopsis metabolism, Databases, Factual, Drug Discovery, Plants, Medicinal genetics, Biological Products, Metabolomics, Plants, Medicinal chemistry
- Abstract
Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding the biology of natural products, whose metabolism itself is often only poorly defined. Here, we describe factors that must be in place to optimize the use of metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-resolved and spatially defined metabolite abundance data and associated metadata. One formidable challenge associated with metabolite profiling is the complexity and analytical limits associated with comprehensively determining the metabolome of an organism. Further, for metabolomics data to be efficiently used by the research community, it must be curated in publicly available metabolomics databases. Such databases require clear, consistent formats, easy access to data and metadata, data download, and accessible computational tools to integrate genome system-scale datasets. Although transcriptomics and proteomics integrate the linear predictive power of the genome, the metabolome represents the nonlinear, final biochemical products of the genome, which results from the intricate system(s) that regulate genome expression. For example, the relationship of metabolomics data to the metabolic network is confounded by redundant connections between metabolites and gene-products. However, connections among metabolites are predictable through the rules of chemistry. Therefore, enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and proteome will enhance the predictive power of genomics data. We detail a public database repository for metabolomics, tools and approaches for statistical analysis of metabolomics data, and methods for integrating these datasets with transcriptomic data to create hypotheses concerning specialized metabolisms that generate the diversity in natural product chemistry. We discuss the importance of close collaborations among biologists, chemists, computer scientists and statisticians throughout the development of such integrated metabolism-centric databases and software.
- Published
- 2013
- Full Text
- View/download PDF
45. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis.
- Author
-
Yeo YS, Nybo SE, Chittiboyina AG, Weerasooriya AD, Wang YH, Góngora-Castillo E, Vaillancourt B, Buell CR, DellaPenna D, Celiz MD, Jones AD, Wurtele ES, Ransom N, Dudareva N, Shaaban KA, Tibrewal N, Chandra S, Smillie T, Khan IA, Coates RM, Watt DS, and Chappell J
- Subjects
- Gene Expression Profiling, Gene Expression Regulation, Plant, Hydrocarbons metabolism, Magnetic Resonance Spectroscopy, Models, Molecular, Plant Proteins genetics, Plant Proteins metabolism, Sesquiterpenes chemistry, Substrate Specificity, Valerian genetics, Alkyl and Aryl Transferases metabolism, Biocatalysis, Biosynthetic Pathways genetics, Sesquiterpenes metabolism, Valerian enzymology
- Abstract
Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.
- Published
- 2013
- Full Text
- View/download PDF
46. Holocarboxylase synthetase 1 physically interacts with histone h3 in Arabidopsis.
- Author
-
Chen X, Chou HH, and Wurtele ES
- Abstract
Biotin is a water-soluble vitamin required by all organisms, but only synthesized by plants and some bacterial and fungal species. As a cofactor, biotin is responsible for carbon dioxide transfer in all biotin-dependent carboxylases, including acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase, and pyruvate carboxylase. Adding biotin to carboxylases is catalyzed by the enzyme holocarboxylase synthetase (HCS). Biotin is also involved in gene regulation, and there is some indication that histones can be biotinylated in humans. Histone proteins and most histone modifications are highly conserved among eukaryotes. HCS1 is the only functional biotin ligase in Arabidopsis and has a high homology with human HCS. Therefore, we hypothesized that HCS1 also biotinylates histone proteins in Arabidopsis. A comparison of the catalytic domain of HCS proteins was performed among eukaryotes, prokaryotes, and archaea, and this domain is highly conserved across the selected organisms. Biotinylated histones could not be identified in vivo by using avidin precipitation or two-dimensional gel analysis. However, HCS1 physically interacts with Arabidopsis histone H3 in vitro, indicating the possibility of the role of this enzyme in the regulation of gene expression.
- Published
- 2013
- Full Text
- View/download PDF
47. Medicinal plants: a public resource for metabolomics and hypothesis development.
- Author
-
Wurtele ES, Chappell J, Jones AD, Celiz MD, Ransom N, Hur M, Rizshsky L, Crispin M, Dixon P, Liu J, P Widrlechner M, and Nikolau BJ
- Abstract
Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq) for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range of antioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM) [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less studied species. The database is publicly available and can be used by researchers in medicine and plant biology.
- Published
- 2012
- Full Text
- View/download PDF
48. MetNet Online: a novel integrated resource for plant systems biology.
- Author
-
Sucaet Y, Wang Y, Li J, and Wurtele ES
- Subjects
- Arabidopsis metabolism, Gene Regulatory Networks, Genes, Plant, Internet, Metabolic Networks and Pathways, Signal Transduction, Glycine max metabolism, Vitis metabolism, Databases, Factual, Plants metabolism, Systems Biology
- Abstract
Background: Plants are important as foods, pharmaceuticals, biorenewable chemicals, fuel resources, bioremediation tools and general tools for recombinant technology. The study of plant biological pathways is advanced by easy access to integrated data sources. Today, various plant data sources are scattered throughout the web, making it increasingly complicated to build comprehensive datasets., Results: MetNet Online is a web-based portal that provides access to a regulatory and metabolic plant pathway database. The database and portal integrate Arabidopsis, soybean (Glycine max) and grapevine (Vitis vinifera) data. Pathways are enriched with known or predicted information on sub cellular location. MetNet Online enables pathways, interactions and entities to be browsed or searched by multiple categories such as sub cellular compartment, pathway ontology, and GO term. In addition to this, the "My MetNet" feature allows registered users to bookmark content and track, import and export customized lists of entities. Users can also construct custom networks using existing pathways and/or interactions as building blocks., Conclusion: The site can be reached at http://www.metnetonline.org. Extensive video tutorials on how to use the site are available through http://www.metnetonline.org/tutorial/.
- Published
- 2012
- Full Text
- View/download PDF
49. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis.
- Author
-
Ngaki MN, Louie GV, Philippe RN, Manning G, Pojer F, Bowman ME, Li L, Larsen E, Wurtele ES, and Noel JP
- Subjects
- Arabidopsis enzymology, Arabidopsis genetics, Arabidopsis growth & development, Arabidopsis Proteins chemistry, Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism, Crystallography, X-Ray, Fatty Acid-Binding Proteins chemistry, Fatty Acid-Binding Proteins deficiency, Fatty Acid-Binding Proteins genetics, Fatty Acid-Binding Proteins metabolism, Intramolecular Lyases deficiency, Intramolecular Lyases genetics, Ligands, Models, Molecular, Phenotype, Protein Binding, Stereoisomerism, alpha-Linolenic Acid metabolism, Arabidopsis chemistry, Biocatalysis, Evolution, Molecular, Fatty Acids metabolism, Intramolecular Lyases chemistry, Intramolecular Lyases metabolism, Protein Folding
- Abstract
Specialized metabolic enzymes biosynthesize chemicals of ecological importance, often sharing a pedigree with primary metabolic enzymes. However, the lineage of the enzyme chalcone isomerase (CHI) remained unknown. In vascular plants, CHI-catalysed conversion of chalcones to chiral (S)-flavanones is a committed step in the production of plant flavonoids, compounds that contribute to attraction, defence and development. CHI operates near the diffusion limit with stereospecific control. Although associated primarily with plants, the CHI fold occurs in several other eukaryotic lineages and in some bacteria. Here we report crystal structures, ligand-binding properties and in vivo functional characterization of a non-catalytic CHI-fold family from plants. Arabidopsis thaliana contains five actively transcribed genes encoding CHI-fold proteins, three of which additionally encode amino-terminal chloroplast-transit sequences. These three CHI-fold proteins localize to plastids, the site of de novo fatty-acid biosynthesis in plant cells. Furthermore, their expression profiles correlate with those of core fatty-acid biosynthetic enzymes, with maximal expression occurring in seeds and coinciding with increased fatty-acid storage in the developing embryo. In vitro, these proteins are fatty-acid-binding proteins (FAPs). FAP knockout A. thaliana plants show elevated α-linolenic acid levels and marked reproductive defects, including aberrant seed formation. Notably, the FAP discovery defines the adaptive evolution of a stereospecific and catalytically 'perfected' enzyme from a non-enzymatic ancestor over a defined period of plant evolution.
- Published
- 2012
- Full Text
- View/download PDF
50. Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination.
- Author
-
Ding G, Che P, Ilarslan H, Wurtele ES, and Nikolau BJ
- Subjects
- Acyl Coenzyme A metabolism, Arabidopsis genetics, Arabidopsis growth & development, Arabidopsis metabolism, Arabidopsis Proteins metabolism, Carbon-Carbon Ligases metabolism, DNA Transposable Elements genetics, DNA, Bacterial genetics, Gene Expression Regulation, Developmental, Gene Expression Regulation, Plant, Homozygote, Microscopy, Electron, Scanning, Mitochondria metabolism, Mutagenesis, Insertional, Plants, Genetically Modified, Protein Subunits metabolism, Reverse Transcriptase Polymerase Chain Reaction, Seeds growth & development, Seeds metabolism, Arabidopsis Proteins genetics, Carbon-Carbon Ligases genetics, Germination genetics, Leucine metabolism, Protein Subunits genetics, Seeds genetics
- Abstract
3-methylcrotonyl CoA carboxylase (MCCase) is a nuclear-encoded, mitochondrial-localized biotin-containing enzyme. The reaction catalyzed by this enzyme is required for leucine (Leu) catabolism, and it may also play a role in the catabolism of isoprenoids and the mevalonate shunt. In Arabidopsis, two MCCase subunits (the biotinylated MCCA subunit and the non-biotinylated MCCB subunit) are each encoded by single genes (At1g03090 and At4g34030, respectively). A reverse genetic approach was used to assess the physiological role of MCCase in plants. We recovered and characterized T-DNA and transposon-tagged knockout alleles of the MCCA and MCCB genes. Metabolite profiling studies indicate that mutations in either MCCA or MCCB block mitochondrial Leu catabolism, as inferred from the increased accumulation of Leu. Under light deprivation conditions, the hyper-accumulation of Leu, 3-methylcrotonyl CoA and isovaleryl CoA indicates that mitochondrial and peroxisomal Leu catabolism pathways are independently regulated. This biochemical block in mitochondrial Leu catabolism is associated with an impaired reproductive growth phenotype, which includes aberrant flower and silique development and decreased seed germination. The decreased seed germination phenotype is only observed for homozygous mutant seeds collected from a parent plant that is itself homozygous, but not from a parent plant that is heterozygous. These characterizations may shed light on the role of catabolic processes in growth and development, an area of plant biology that is poorly understood., (© 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.)
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.