1. Surface and sub-surface modifications of copper electrodes exposed to high-field conditioning at cryogenic temperatures
- Author
-
Jacewicz, Marek, Profatilova, Iaroslava, Szaniawski, Piotr, Popov, Inna, Ashkenazy, Yinon, Calatroni, Sergio, and Wuensch, Walter
- Subjects
Physics - Accelerator Physics ,Condensed Matter - Materials Science ,Physics - Plasma Physics - Abstract
In order to investigate the dependence of conditioning and field-holding on temperature, three pairs of copper electrodes underwent high voltage conditioning with direct current (DC) pulses while kept at a single temperature, unique for each set (300~K, 30~K and 10~K), until saturation field for each set was found. The sets conditioned at cold showed a significant increase in the field holding capability, reaching fields up to 147 MV/m after tens of millions of pulses and very few breakdowns (BDs). We interpret this as an indication of the conditioning effect being due to high field pulsing rather than exposure to BDs. The effect of the warm and cold conditioning was investigated with high-resolution microscopy, characterizing the BD spots on the anode and cathode according to their morphology and with scanning transmission electron microscopy (STEM) analyzing the changes in the sub-surface regions. Atypical BD spot features were found on the cryogenically conditioned cathode surfaces, with very shallow craters of a star-like shape. The number of atypical spots increased with decreased temperatures, reaching 26 and 53 percent of the total number of spots at 30~K and 10~K, respectively. A hypothesis explaining the formation of these features is also presented. The very different morphology of the anode and cathode BD spots is presented in detail that suggesting an unknown shielding mechanism that prevents the center of the anode spot from melting. These results provide important experimental input for the development of quantitative theories and models for BD initiation and inter-electrode plasma formation.
- Published
- 2024