80 results on '"Worsaae K"'
Search Results
2. Field collections and environmental DNA surveys reveal topographic complexity of coral reefs as a predictor of cryptobenthic biodiversity across small spatial scales
- Author
-
Brodnicke, O. B., Jensen, M. R., Thomsen, P. F., Brorly, T., Andersen, B. L., Knudsen, S. W., Præbel, K., Brandl, S. J., Sweet, M. J., Møller, P. R., Worsaae, K., Brodnicke, O. B., Jensen, M. R., Thomsen, P. F., Brorly, T., Andersen, B. L., Knudsen, S. W., Præbel, K., Brandl, S. J., Sweet, M. J., Møller, P. R., and Worsaae, K.
- Abstract
Coral reefs represent some of the most biodiverse ecosystems in the world but are currently undergoing large-scale degradation due to anthropogenic stressors. Such degradation usually begins with coral bleaching, and if the stress condition is inflicted for too long may eventually result in loss of structural complexity (or “flattening”) of the reef, dramatically changing habitat availability for reef-associated fauna. Despite having been linked to important ecosystem functions, cryptobenthic organisms are often overlooked in ecological monitoring programs, and their microhabitat dependencies are poorly understood. Here, we combined collection-based biodiversity monitoring techniques with five different environmental DNA (eDNA) sampling techniques (Reef water, sediment, crevice water, slurp gun, and bulk sediment) to survey cryptobenthic fishes and annelids on a Maldivian fringing coral reef. Collectively, 176 fish and 140 annelid taxa were detected with eDNA across 14 surveyed sites, more than doubling the reported annelid taxa in the region with 88 new occurrences. Water filtered near the reef structure revealed the highest species richness out of the five eDNA sampling techniques tested. Furthermore, we found correlations between fish species richness and topographic complexity for both collection- and eDNA-based techniques. This suggests that detection by eDNA may be linked to site-specific predictors and reveal community differences across small spatial scales (tens of meters). We also report that reef flattening (going from structural complex to less complex sites) can cause a 50% reduction in fish diversity and that cryptobenthic fish species richness was highly associated with branching corals. In contrast, annelid communities showed no clear correlations with environmental predictors, but co-amplification of non-target, non-annelid taxa may have distorted such correlations if present. This suggest that the predictive powers of eDNA for environmental gradien, Coral reefs represent some of the most biodiverse ecosystems in the world but are currently undergoing large-scale degradation due to anthropogenic stressors. Such degradation usually begins with coral bleaching, and if the stress condition is inflicted for too long may eventually result in loss of structural complexity (or “flattening”) of the reef, dramatically changing habitat availability for reef-associated fauna. Despite having been linked to important ecosystem functions, cryptobenthic organisms are often overlooked in ecological monitoring programs, and their microhabitat dependencies are poorly understood. Here, we combined collection-based biodiversity monitoring techniques with five different environmental DNA (eDNA) sampling techniques (Reef water, sediment, crevice water, slurp gun, and bulk sediment) to survey cryptobenthic fishes and annelids on a Maldivian fringing coral reef. Collectively, 176 fish and 140 annelid taxa were detected with eDNA across 14 surveyed sites, more than doubling the reported annelid taxa in the region with 88 new occurrences. Water filtered near the reef structure revealed the highest species richness out of the five eDNA sampling techniques tested. Furthermore, we found correlations between fish species richness and topographic complexity for both collection- and eDNA-based techniques. This suggests that detection by eDNA may be linked to site-specific predictors and reveal community differences across small spatial scales (tens of meters). We also report that reef flattening (going from structural complex to less complex sites) can cause a 50% reduction in fish diversity and that cryptobenthic fish species richness was highly associated with branching corals. In contrast, annelid communities showed no clear correlations with environmental predictors, but co-amplification of non-target, non-annelid taxa may have distorted such correlations if present. This suggest that the predictive powers of eDNA for environmental grad
- Published
- 2024
3. Longipalpa Saltatrix, A New Genus And Species Of The Meiofaunal Family Nerillidae (Annelida : Polychaeta) From An Anchihaline Cave In Bermuda
- Author
-
Worsaae, K, Sterrer, W, Iliffe, T M, and BioStor
- Published
- 2004
4. Molecular and morphological phylogeny of Saccocirridae (Annelida) reveals two cosmopolitan clades with specific habitat preferences
- Author
-
Di Domenico, M., Martínez, A., Lana, P., and Worsaae, K.
- Published
- 2014
- Full Text
- View/download PDF
5. Acquisition of Dwarf Male "Harems" by Recently Settled Females of Osedax roseus n. sp. (Siboglinidae; Annelida)
- Author
-
Rouse, G. W., Worsaae, K., Johnson, S. B., Jones, W. J., and Vrijenhoek, R. C.
- Published
- 2008
- Full Text
- View/download PDF
6. Response of the meiofaunal annelid Saccocirrus pussicus (Saccocirridae) to sandy beach morphodynamics
- Author
-
Di Domenico, M., Martínez, A., Almeida, T. C. M., Martins, M. O., Worsaae, K., and Lana, P. C.
- Published
- 2014
- Full Text
- View/download PDF
7. Conservative route to genome compaction in a miniature annelid (November, 10.1038/s41559-020-01327-6, 2020)
- Author
-
Martin-Duran, JM, Vellutini, BC, Marletaz, F, Cetrangolo, V, Cvetesic, N, Thiel, D, Henriet, S, Grau-Bove, X, Carrillo-Baltodano, AM, Gu, W, Kerbl, A, Marquez, Y, Bekkouche, N, Chourrout, D, Gomez-Skarmeta, JL, Irimia, M, Lenhard, B, Worsaae, K, Hejnol, A, and Wellcome Trust
- Subjects
Evolutionary Biology ,Science & Technology ,Ecology ,Environmental Sciences & Ecology ,Life Sciences & Biomedicine - Published
- 2020
8. New species of Pisionidens (Sigalionidae, Annelida) from Akumal, México
- Author
-
Petersen H.C.B., Gonzalez B.C., Martinez A., and Worsaae K.
- Subjects
Yucatan peninsula ,Aphroditiformia ,Interstitial ,Scanning electron microscopy ,Taxonomy - Abstract
Pisionidens Aiyar & Alikuhni, 1943 is a genus of small scale-less annelids formerly belonging to the family 'Pisionidae', now synonymized with the scale worm family Sigalionidae. A new species from Akumal, México, Pisionidens ixazaluo-hae n. sp., is herein described, including a genetic barcode, and diagnosed by parapodia from segment 8, males having a continuous line of midventral pores, and the presence of a single copulatory segment without parapodia. The new species differs in morphology from the three previously described species, including P. indica (Aiyar & Alikuhni, 1940), repre-senting the only other species previously reported from the Caribbean Sea and Gulf of Mexico. A comparative table with a summary of the main taxonomic characters of all described species of the genus, including information on distribution, is provided.
- Published
- 2016
- Full Text
- View/download PDF
9. The potent respiratory system of Osedax mucofloris (Siboglinidae, Annelida)--a prerequisite for the origin of bone-eating Osedax?
- Author
-
Huusgaard, RS, Vismann, B, Kühl, M, Macnaugton, M, Colmander, V, Rouse, GW, Glover, AG, Dahlgren, T, Worsaae, K, Huusgaard, RS, Vismann, B, Kühl, M, Macnaugton, M, Colmander, V, Rouse, GW, Glover, AG, Dahlgren, T, and Worsaae, K
- Abstract
Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O(2) depletion, and build-up of potentially toxic sulphide. We measured the O(2) distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O(2) uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O(2) consumption that exceeded the average O(2) consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O(2) demand due to aerobic heterotrophic endosymbionts.
- Published
- 2012
10. Acquisition of dwarf male 'harems' by recently settled females of Osedax roseus n. sp. (Siboglinidae; Annelida)
- Author
-
Rouse, G W, Worsaae, K, Johnson, S. B., Jones, W. J., Vrijenhoek, R C, Rouse, G W, Worsaae, K, Johnson, S. B., Jones, W. J., and Vrijenhoek, R C
- Abstract
Udgivelsesdato: 2008-Feb, After the deployment of several whale carcasses in Monterey Bay, California, a time-series analysis revealed the presence of a new species of Osedax, a genus of bone-eating siboglinid annelids. That species is described here as Osedax roseus n. sp. It is the fifth species described since the erection of this genus and, like its congeners, uses a ramifying network of "roots" to house symbiotic bacteria. In less than 2 months, Osedax roseus n. sp. colonized the exposed bones of a whale carcass deposited at 1018-m depth, and many of the females were fecund in about 3 months post-deployment. As with other Osedax spp., the females have dwarf males in their tube lumens. The males accrue over time until the sex ratio is markedly male-biased. This pattern of initial female settlement followed by gradual male accumulation is consistent with the hypothesis that male sex may be environmentally determined in Osedax. Of the previously described species in this genus, Osedax roseus n. sp. is most similar to O. rubiplumus, but it has several anatomical differences, as well as much smaller females, dwarf males, and eggs. Osedax roseus n. sp. is markedly divergent (minimally 16.6%) for mitochondrial cytochrome oxidase subunit I (mtCOI) sequences from any other Osedax species.
- Published
- 2008
11. Longipalpa saltatrix, a new genus and species of the meiofaunal family Nerillidae (Annelida: Polychaeta) from an anchihaline cave in Bermuda
- Author
-
Worsaae, K., Sterrer, W., and Thomas Iliffe
12. Acquisition of dwarf male 'harems' by recently settled females of Osedax roseus n. sp. (Siboglinidae; Annelida)
- Author
-
Greg Rouse, Worsaae, K., Johnson, S. B., Jones, W. J., and Vrijenhoek, R. C.
13. Scientific note: First occurrence of the interstitial polychaete Saccocirrus pussicus (Saccocirridae, polychaeta) in exposed beaches of Uruguay
- Author
-
Rodríguez, M., Muniz, P., Natalia Venturini, Domenico, M. D., Martínez, A., and Worsaae, K.
14. Hooked on zombie worms? Genetic blueprints of bristle formation in Osedax japonicus (Annelida).
- Author
-
Tilic E, Miyamoto N, Herranz M, and Worsaae K
- Abstract
Background: This study sheds light on the genetic blueprints of chaetogenesis (bristle formation), a complex biomineralization process essential not only for the diverse group of bristle worms (annelids) but also for other spiralians. We explore the complex genetic mechanisms behind chaetae formation in Osedax japonicus, the bone-devouring deep-sea worm known for its unique ecological niche and morphological adaptations., Results: We characterized the chaetal structure and musculature using electron microscopy and immunohistochemistry, and combined RNAseq of larval stages with in-situ hybridization chain reaction (HCR) to reveal gene expression patterns integral to chaetogenesis. Our findings pinpoint a distinct surge in gene expression during the larval stage of active chaetogenesis, identifying specific genes and cells involved., Conclusions: Our research underscores the value of studying on non-model, "aberrant" organisms like Osedax, whose unique, temporally restricted chaetogenesis provided insights into elevated gene expression across specific larval stages and led to the identification of genes critical for chaetae formation. The genes identified as directly involved in chaetogenesis lay the groundwork for future comparative studies across Annelida and Spiralia, potentially elucidating the homology of chaetae-like chitinous structures and their evolution., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
15. Circumtropical distribution and cryptic species of the meiofaunal enteropneust Meioglossus (Harrimaniidae, Hemichordata).
- Author
-
Defourneaux É, Herranz M, Armenteros M, Sørensen MV, Norenburg JL, Park T, and Worsaae K
- Subjects
- Animals, Caribbean Region, Indian Ocean, Phylogeny
- Abstract
Hemichordata has always played a central role in evolutionary studies of Chordata due to their close phylogenetic affinity and shared morphological characteristics. Hemichordates had no meiofaunal representatives until the surprising discovery of a microscopic, paedomorphic enteropneust Meioglossus psammophilus (Harrimaniidae, Hemichordata) from the Caribbean in 2012. No additional species have been described since, questioning the broader distribution and significance of this genus. However, being less than a millimeter long and superficially resembling an early juvenile acorn worm, Meioglossus may easily be overlooked in both macrofauna and meiofauna surveys. We here present the discovery of 11 additional populations of Meioglossus from shallow subtropical and tropical coralline sands of the Caribbean Sea, Red Sea, Indian Ocean, and East China Sea. These geographically separated populations show identical morphology but differ genetically. Our phylogenetic reconstructions include four gene markers and support the monophyly of Meioglossus. Species delineation analyses revealed eight new cryptic species, which we herein describe using DNA taxonomy. This study reveals a broad circumtropical distribution, supporting the validity and ecological importance of this enigmatic meiobenthic genus. The high cryptic diversity and apparent morphological stasis of Meioglossus may exemplify a potentially common evolutionary 'dead-end' scenario, where groups with highly miniaturized and simplified body plan lose their ability to diversify morphologically., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
16. Postembryonic development and male paedomorphosis in Osedax (Siboglinidae, Annelida).
- Author
-
Worsaae K, Rouan A, Seaver E, Miyamoto N, and Tilic E
- Abstract
Most species of the bone-devouring marine annelid, Osedax, display distinct sexual dimorphism with macroscopic sedentary females rooted in bones and free-living microscopic dwarf males. The paedomorphic male resembles the non-feeding metatrochophore larva in size, presence of eight pairs of chaetae, and a head ciliation potentially representing a residual prototroch. The male development may thus uniquely reiterate and validate the theoretical heterochrony process "progenesis", which suggests that an accelerated sexual maturation and early arrest of somatic growth can lead to a miniaturized and paedomorphic adult. In this study, we describe the postembryonic larval and juvenile organogenesis of Osedax japonicus to test for a potential synchronous arrest of somatic growth during male development. Five postembryonic stages could be distinguished, resembling day one to five in the larval development at 10°C: (0D) first cleavage of fertilized eggs (embryos undergo unequal spiral cleavage), (1D) pre-trochophore, with apical organ, (2D) early trochophore, + prototroch, brain, circumesophageal connectives and subesophageal commissure, (3D) trochophore, + telotroch, four ventral nerves, (4D) early metatrochophore, + protonephridia, dorsal and terminal sensory organs, (5D) metatrochophore, + two ventral paratrochs, mid-ventral nerve, posterior trunk commissure, two dorsal nerves; competent for metamorphosis. The larval development largely mirrors that of other lecithotrophic annelid larvae but does not show continuous chaetogenesis or full gut development. Additionally, O. japonicus larvae exhibit an unpaired, mid-dorsal, sensory organ. Female individuals shed their larval traits during metamorphosis and continue organogenesis (including circulatory system) and extensive growth for 2-3 weeks before developing oocytes. In contrast, males develop sperm within a day of metamorphosis and display a synchronous metamorphic arrest in neural and muscular development, retaining a large portion of larval features post metamorphosis. Our findings hereby substantiate male miniaturization in Osedax to be the outcome of an early and synchronous offset of somatic development, fitting the theoretical process "progenesis". This may be the first compelling morpho-developmental exemplification of a progenetic origin of a microscopic body plan. The presented morphological staging system will further serve as a framework for future examination of molecular patterns and pathways determining Osedax development., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Worsaae, Rouan, Seaver, Miyamoto and Tilic.)
- Published
- 2024
- Full Text
- View/download PDF
17. A transcriptome-based phylogeny for Polynoidae (Annelida: Aphroditiformia).
- Author
-
Gonzalez BC, González VL, Martínez A, Worsaae K, and Osborn KJ
- Subjects
- Animals, Phylogeny, Transcriptome, Biological Evolution, Annelida genetics, Polychaeta genetics
- Abstract
Polynoidae is the most diverse radiation of Aphroditiformia and one of the most successful groups of all Annelida in terms of diversity and habitats colonized. With such an unmatched diversity, phylogenetic investigations have struggled to understand their evolutionary relationships. Previous phylogenetic analyses have slowly increased taxon sampling and employed methodologies, but despite their diversity and biological importance, large genomic sampling is limited. To investigate the internal relationships within Polynoidae, we conducted the first phylogenomic analyses of the group based on 12 transcriptomes collected from species inhabiting a broad array of habitats, including shallow and deep waters, as well as hydrothermal vents, anchialine caves and the midwater. Our phylogenomic analyses of Polynoidae recovered congruent tree topologies representing the clades Polynoinae, Macellicephalinae and Lepidonotopodinae. Members of Polynoinae and Macellicephalinae clustered in well-supported and independent clades. In contrast, Lepidonotopodinae taxa were always recovered nested within Macellicephalinae. Though our sampling only covers a small proportion of the species known for Polynoidae, our results provide a robust phylogenomic framework to build from, emphasizing previously hypothesized relationships between Macellicephalinae and Lepidonotopodinae taxa, while providing new insights on the origin of enigmatic cave and pelagic lineages., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
18. Using eDNA to find Micrognathozoa.
- Author
-
Giribet G, Wangensteen OS, Garcés-Pastor S, Møller PR, and Worsaae K
- Subjects
- Animals, DNA Barcoding, Taxonomic, Biodiversity, Biota, DNA genetics, Environmental Monitoring, DNA, Environmental
- Abstract
Over the past decades the sampling of environmental DNA (eDNA) - encompassing the DNA of all organisms present in an environmental sample
1 - has emerged as a technique for biodiversity monitoring and discovery in a diversity of environments. Avoiding the physical collection and identification of biota, this approach is praised for its independence of taxonomic expertise and has changed the way biologists study biodiversity. However, a common result in eDNA studies is the finding of unexpected taxa which are often removed by conservative bioinformatic filters or disregarded, since the authors are uncertain about the result and rarely have the interest, time, skills, and/or resources to return to the field and confirm with actual specimens2 . Here, we report a case in which an eDNA discovery led to the physical localization of a member of the Micrognathozoa (Figure 1B) - a rare group of limnic micrometazoans, and the animal phylum to be discovered last3 , which is the sister group to rotifers4 , 5 . To this day, Micrognathozoa still comprises only a single named species from Greenland and a few additional disparate places., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
19. Phylogenomic analyses of mud dragons (Kinorhyncha).
- Author
-
Herranz M, Stiller J, Worsaae K, and Sørensen MV
- Subjects
- Animals, Phylogeny, Arthropods, Nematoda
- Abstract
Mud dragons (Kinorhyncha) are microscopic invertebrates, inhabiting marine sediments across the globe from intertidal to hadal depths. They are segmented, moulting animals like arthropods, but grouping with the unsegmented priapulans and loriciferans within Ecdysozoa. There are more than 300 species of kinorhynchs described within 31 genera and 11 families, however, their evolutionary relationships have so far only been investigated using morphology and a few molecular markers. Here we aim to resolve the relationships and classification of major clades within Kinorhyncha using transcriptomic data. In addition, we wish to revisit the position of three indistinctly segmented, aberrant genera in order to reconstruct the evolution of distinct segmentation within the group. We conducted a phylogenomic analysis of Kinorhyncha including 21 kinorhynch transcriptomes (of which 18 are new) representing 15 genera, and seven outgroups including priapulan, loriciferan, nematode and nematomorph transcriptomes. Results show a congruent and robust tree that supports the division of Kinorhyncha into two major clades: Cyclorhagida and Allomalorhagida. Cyclorhagida is composed of three subclades: Xenosomata, Kentrorhagata comb. nov. (including the aberrant Zelinkaderes) and Echinorhagata. Allomalorhagida is composed of two subclades: Pycnophyidae and Anomoirhaga nom. nov. Anomoirhaga nom. nov. accommodates the aberrant genera Cateria (previously nested within Cyclorhagida) and Franciscideres together with five additional genera. The distant and derived positions of the aberrant Zelinkaderes, Cateria and Franciscideres species suggest that their less distinct trunk segmentation evolved convergently, and that segmentation evolved among kinorhynch stem groups., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
20. Revisiting kinorhynch segmentation: variation of segmental patterns in the nervous system of three aberrant species.
- Author
-
Herranz M, Park T, Di Domenico M, Leander BS, Sørensen MV, and Worsaae K
- Abstract
Background: Kinorhynch segmentation differs from the patterns found in Chordata, Arthropoda and Annelida which have coeloms and circulatory systems. Due to these differences and their obsolete status as 'Aschelminthes', the microscopic kinorhynchs are often not acknowledged as segmented bilaterians. Yet, morphological studies have shown a conserved segmental arrangement of ectodermal and mesodermal organ systems with spatial correspondence along the anterior-posterior axis. However, a few aberrant kinorhynch lineages present a worm-like body plan with thin cuticle and less distinct segmentation, and thus their study may aid to shed new light on the evolution of segmental patterns within Kinorhyncha., Results: Here we found the nervous system in the aberrant Cateria styx and Franciscideres kalenesos to be clearly segmental, and similar to those of non-aberrant kinorhynchs; hereby not mirroring their otherwise aberrant and posteriorly shifted myoanatomy. In Zelinkaderes yong, however, the segmental arrangement of the nervous system is also shifted posteriorly and misaligned with respect to the cuticular segmentation., Conclusions: The morphological disparity together with the distant phylogenetic positions of F. kalenesos, C. styx and Z. yong support a convergent origin of aberrant appearances and segmental mismatches within Kinorhyncha., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
21. Muscular adaptations in swimming scale worms (Polynoidae, Annelida).
- Author
-
Allentoft-Larsen MC, Gonzalez BC, Daniels J, Katija K, Osborn K, and Worsaae K
- Abstract
Annelids are predominantly found along with the seafloor, but over time have colonized a vast diversity of habitats, such as the water column, where different modes of locomotion are necessary. Yet, little is known about their potential muscular adaptation to the continuous swimming behaviour required in the water column. The musculature and motility were examined for five scale worm species of Polynoidae (Aphroditiformia, Annelida) found in shallow waters, deep sea or caves and which exhibit crawling, occasional swimming or continuous swimming, respectively. Their parapodial musculature was reconstructed using microCT and computational three-dimensional analyses, and the muscular functions were interpreted from video recordings of their locomotion. Since most benthic scale worms are able to swim for short distances using body and parapodial muscle movements, suitable musculature for swimming is already present. Our results indicate that rather than rearrangements or addition of muscles, a shift to a pelagic lifestyle is mainly accompanied by structural loss of muscle bundles and density, as well as elongation of extrinsic dorsal and ventral parapodial muscles. Our study documents clear differences in locomotion and musculature among closely related annelids with different lifestyles as well as points to myoanatomical adaptations for accessing the water column., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
22. Geographical sampling bias on the assessment of endemism areas for marine meiobenthic fauna.
- Author
-
Garraffoni A, Sørensen MV, Worsaae K, Di Domenico M, Sales LP, Santos J, and Lourenço A
- Subjects
- Animals, Biodiversity, Biological Evolution, Ecosystem, Phylogeny, Species Specificity, Geography, Marine Biology, Selection Bias
- Abstract
Species distribution patterns are constrained by historical and ecological processes in space and time, but very often the species range sizes are geographical sampling biases resulting from unequal sampling effort. One of the most common definitions of endemism is based on the "congruence of distributional areas" criterion, when two or more species have the same distributional limits. By acknowledging that available data of marine meiobenthic species are prone to geographical sampling bias and that can affect the accuracy of the biogeographical signals, the present study combines analyses of inventory incompleteness and recognition of spatial congruence of Gastrotricha, Kinorhyncha, meiobenthic Annelida and Tardigrada in order to better understand the large-scale distribution of these organisms in coastal and shelf areas of the world. We used the marine bioregionalization framework for geographical operative units to quantify the inventory incompleteness effect (by modelling spatial predictions of species richness) and to recognize areas of endemism. Our models showed that the difference between observed and expected species richness in the Southern Hemisphere is much higher than in the Northern Hemisphere. Parsimony Analysis of Endemicity delimited 20 areas of endemism, most found in the Northern Hemisphere. Distribution patterns of meiobenthic species are shown to respond to events of geographical barriers and abiotic features, and their distribution is far from homogeneous throughout the world. Also, our data show that ecoregions with distinct biotas have at least some cohesion over evolutionary time. However, we found that inventory incompleteness may significantly affect the explanatory power of areas of endemism delimitation in both hemispheres. Yet, whereas future increases in sampling efforts are likely to change the spatial congruence ranges in the Southern Hemisphere, patterns for the Northern Hemisphere may prove to be relatively more resilient., (© The Willi Hennig Society 2021.)
- Published
- 2021
- Full Text
- View/download PDF
23. Myogenesis of Siboglinum fiordicum sheds light on body regionalisation in beard worms (Siboglinidae, Annelida).
- Author
-
Rimskaya-Korsakova N, Karaseva N, Pimenov T, Rapp HT, Southward E, Temereva E, and Worsaae K
- Abstract
Background: Many annelids, including well-studied species such as Platynereis, show similar structured segments along their body axis (homonomous segmentation). However, numerous annelid species diverge from this pattern and exhibit specialised segments or body regions (heteronomous segmentation). Recent phylogenomic studies and paleontological findings suggest that a heteronomous body architecture may represent an ancestral condition in Annelida. To better understand the segmentation within heteronomous species we describe the myogenesis and mesodermal delineation of segments in Siboglinum fiordicum during development., Results: Employing confocal and transmission electron microscopy we show that the somatic longitudinal musculature consists of four separate strands, among which ventrolateral one is the most prominent and is proposed to drive the search movements of the head of the late metatrochophore. The somatic circular musculature lies inside the longitudinal musculature and is predominantly developed at the anterior end of the competent larva to support the burrowing behaviour. Our application of transmission electron microscopy allows us to describe the developmental order of the non-muscular septa. The first septum to form is supported by thick bundles of longitudinal muscles and separates the body into an anterior and a posterior region. The second group of septa to develop further divides the posterior body region (opisthosoma) and is supported by developing circular muscles. At the late larval stage, a septum reinforced by circular muscles divides the anterior body region into a forepart and a trunk segment. The remaining septa and their circular muscles form one by one at the very posterior end of the opisthosoma., Conclusions: The heteronomous Siboglinum lacks the strict anterior to posterior sequence of segment formation as it is found in the most studied annelid species. Instead, the first septum divides the body into two body regions before segments are laid down in first the posterior opisthosoma and then in the anterior body, respectively. Similar patterns of segment formation are described for the heteronomous chaetopterid Chaetopterus variopedatus and serpulid Hydroides elegans and may represent an adaptation of these annelids to the settlement and transition to the sedentarian-tubiculous mode of life., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
24. Have the eyes of bioluminescent scale worms adapted to see their own light? A comparative study of eyes and vision in Harmothoe imbricata and Lepidonotus squamatus.
- Author
-
Garm A, Simonsen SH, Mendoza-González P, and Worsaae K
- Subjects
- Adaptation, Physiological, Animals, Eye, Humans, Vision, Ocular, Annelida, Polychaeta
- Abstract
Annelids constitute a diverse phylum with more than 19,000 species, which exhibit greatly varying morphologies and lifestyles ranging from sessile detritivores to fast swimming active predators. The lifestyle of an animal is closely linked to its sensory systems, not least the visual equipment. Interestingly, many errantian annelid species from different families, such as the scale worms (Polynoidae), have two pairs of eyes on their prostomium. These eyes are typically 100-200 µm in diameter and structurally similar judged from their gross morphology. The polynoids Harmothoe imbricata and Lepidonotus squamatus from the North Atlantic are both benthic predators preying on small invertebrates but only H. imbricata can produce bioluminescence in its scales. Here, we examined the eye morphology, photoreceptor physiology and light-guided behaviour in these two scale worms to assess their visual capacity and visual ecology. The structure and physiology of the two pairs of eyes are remarkably similar within each species, with the only difference being the gaze direction. The photoreceptor physiology, however, differs between species. Both species express a single opsin in their eyes, but in H. imbricata the peak sensitivity is green shifted and the temporal resolution is lower, suggesting that the eyes of H. imbricata are adapted to detect their own bioluminescence. The behavioural experiments showed that both species are strictly night active but yielded no support for the hypothesis that H. imbricata is repelled by its own bioluminescence., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2021. Published by The Company of Biologists Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
25. Morphological convergence and adaptation in cave and pelagic scale worms (Polynoidae, Annelida).
- Author
-
Gonzalez BC, Martínez A, Worsaae K, and Osborn KJ
- Subjects
- Animals, Biological Evolution, Genome, Mitochondrial, Genomics methods, Phenotype, Phylogeny, Polychaeta classification, Adaptation, Biological, Caves, Polychaeta anatomy & histology, Polychaeta physiology
- Abstract
Across Annelida, accessing the water column drives morphological and lifestyle modifications-yet in the primarily "benthic" scale worms, the ecological significance of swimming has largely been ignored. We investigated genetic, morphological and behavioural adaptations associated with swimming across Polynoidae, using mitogenomics and comparative methods. Mitochondrial genomes from cave and pelagic polynoids were highly similar, with non-significant rearrangements only present in cave Gesiella. Gene orders of the new mitogenomes were highly similar to shallow water species, suggestive of an underlying polynoid ground pattern. Being the first phylogenetic analyses to include the holopelagic Drieschia, we recovered this species nested among shallow water terminals, suggesting a shallow water ancestry. Based on these results, our phylogenetic reconstructions showed that swimming evolved independently three times in Polynoidae, involving convergent adaptations in morphology and motility patterns across the deep sea (Branchipolynoe), midwater (Drieschia) and anchialine caves (Pelagomacellicephala and Gesiella). Phylogenetic generalized least-squares (PGLS) analyses showed that holopelagic and anchialine cave species exhibit hypertrophy of the dorsal cirri, yet, these morphological modifications are achieved along different evolutionary pathways, i.e., elongation of the cirrophore versus style. Together, these findings suggest that a water column lifestyle elicits similar morphological adaptations, favouring bodies designed for drifting and sensing.
- Published
- 2021
- Full Text
- View/download PDF
26. Author Correction: Broad North Atlantic distribution of a meiobenthic annelid - against all odds.
- Author
-
Worsaae K, Kerbl A, Vang Á, and Gonzalez BC
- Published
- 2021
- Full Text
- View/download PDF
27. Conservative route to genome compaction in a miniature annelid.
- Author
-
Martín-Durán JM, Vellutini BC, Marlétaz F, Cetrangolo V, Cvetesic N, Thiel D, Henriet S, Grau-Bové X, Carrillo-Baltodano AM, Gu W, Kerbl A, Marquez Y, Bekkouche N, Chourrout D, Gómez-Skarmeta JL, Irimia M, Lenhard B, Worsaae K, and Hejnol A
- Subjects
- Animals, Genetic Linkage, Genome, Takifugu genetics, Annelida genetics, Evolution, Molecular
- Abstract
The causes and consequences of genome reduction in animals are unclear because our understanding of this process mostly relies on lineages with often exceptionally high rates of evolution. Here, we decode the compact 73.8-megabase genome of Dimorphilus gyrociliatus, a meiobenthic segmented worm. The D. gyrociliatus genome retains traits classically associated with larger and slower-evolving genomes, such as an ordered, intact Hox cluster, a generally conserved developmental toolkit and traces of ancestral bilaterian linkage. Unlike some other animals with small genomes, the analysis of the D. gyrociliatus epigenome revealed canonical features of genome regulation, excluding the presence of operons and trans-splicing. Instead, the gene-dense D. gyrociliatus genome presents a divergent Myc pathway, a key physiological regulator of growth, proliferation and genome stability in animals. Altogether, our results uncover a conservative route to genome compaction in annelids, reminiscent of that observed in the vertebrate Takifugu rubripes.
- Published
- 2021
- Full Text
- View/download PDF
28. Publisher Correction: Conservative route to genome compaction in a miniature annelid.
- Author
-
Martín-Durán JM, Vellutini BC, Marlétaz F, Cetrangolo V, Cvetesic N, Thiel D, Henriet S, Grau-Bové X, Carrillo-Baltodano AM, Gu W, Kerbl A, Marquez Y, Bekkouche N, Chourrout D, Gómez-Skarmeta JL, Irimia M, Lenhard B, Worsaae K, and Hejnol A
- Published
- 2021
- Full Text
- View/download PDF
29. Transitions in functional morphology from "large branchiopods" to Cladocera: Video and confocal microscopic studies of Cyclestheria hislopi (Cyclestherida) and Sida crystallina (Cladocera: Ctenopoda).
- Author
-
Sigvardt ZMS, Worsaae K, Savatenalinton S, Kerbl A, and Olesen J
- Subjects
- Animals, Arthropod Antennae anatomy & histology, Biological Evolution, Extremities anatomy & histology, Maxilla anatomy & histology, Muscles anatomy & histology, Torso anatomy & histology, Cladocera anatomy & histology, Cladocera cytology, Microscopy, Confocal, Microscopy, Video
- Abstract
Great diversity is found in morphology and functionality of arthropod appendages, both along the body axis of individual animals and between different life-cycle stages. Despite many branchiopod crustaceans being well known for displaying a relatively simple arrangement of many serially post-maxillary appendages (trunk limbs), this taxon also shows an often unappreciated large variation in appendage morphology. Diplostracan branchiopods exhibit generally a division of labor into locomotory antennae and feeding/filtratory post-maxillary appendages (trunk limbs). We here study the functionality and morphology of the swimming antennae and feeding appendages in clam shrimps and cladocerans and analyze the findings in an evolutionary context (e.g., possible progenetic origin of Cladocera). We focus on Cyclestheria hislopi (Cyclestherida), sister species to Cladocera and exhibiting many "large" branchiopod characters (e.g., many serially similar appendages), and Sida crystallina (Cladocera, Ctenopoda), which likely exhibits plesiomorphic cladoceran traits (e.g., six pairs of serially similar appendages). We combine (semi-)high-speed recordings of behavior with confocal laser scanning microscopy analyses of musculature to infer functionality and homologies of locomotory and filtratory appendages in the two groups. Our morphological study shows that the musculature in all trunk limbs (irrespective of limb size) of both C. hislopi and S. crystallina comprises overall similar muscle groups in largely corresponding arrangements. Some differences between C. hislopi and S. crystallina, such as fewer trunk limbs and antennal segments in the latter, may reflect a progenetic origin of Cladocera. Other differences seem related to the appearance of a specialized type of swimming and feeding in Cladocera, where the anterior locomotory system (antennae) and the posterior feeding system (trunk limbs) have become fully separated functionally from each other. This separation is likely one explanation for the omnipresence of cladocerans, which have conquered both freshwater and marine free water masses and a number of other habitats., (© 2020 Wiley Periodicals LLC.)
- Published
- 2020
- Full Text
- View/download PDF
30. Broad North Atlantic distribution of a meiobenthic annelid - against all odds.
- Author
-
Worsaae K, Kerbl A, Vang Á, and Gonzalez BC
- Subjects
- Animals, Annelida genetics, Atlantic Ocean, DNA Barcoding, Taxonomic, Evolution, Molecular, Annelida classification, Phylogeography
- Abstract
DNA barcoding and population genetic studies have revealed an unforeseen hidden diversity of cryptic species among microscopic marine benthos, otherwise exhibiting highly similar and simple morphologies. This has led to a paradigm shift, rejecting cosmopolitism of marine meiofauna until genetically proven and challenging the "Everything is Everywhere, but the environment selects" hypothesis that claims ubiquitous distribution of microscopic organisms. With phylogenetic and species delimitation analyses of worldwide genetic samples of the meiofaunal family Dinophilidae (Annelida) we here resolve three genera within the family and showcase an exceptionally broad, boreal, North Atlantic distribution of a single microscopic marine species with no obvious means of dispersal besides vicariance. With its endobenthic lifestyle, small size, limited migratory powers and lack of pelagic larvae, the broad distribution of Dinophilus vorticoides seems to constitute a "meiofaunal paradox". This species feasts in the biofilm among sand grains, but also on macroalgae and ice within which it can likely survive long-distance rafting dispersal due to its varying lifecycle stages; eggs encapsulated in cocoons and dormant encystment stages. Though often neglected and possibly underestimated among marine microscopic species, dormancy may be a highly significant factor for explaining wide distribution patterns and a key to solving this meiofaunal paradox.
- Published
- 2019
- Full Text
- View/download PDF
31. The central nervous system of Oweniidae (Annelida) and its implications for the structure of the ancestral annelid brain.
- Author
-
Beckers P, Helm C, Purschke G, Worsaae K, Hutchings P, and Bartolomaeus T
- Abstract
Background: Recent phylogenomic analyses congruently reveal a basal clade which consists of Oweniidae and Mageloniidae as sister group to the remaining Annelida. These results indicate that the last common ancestor of Annelida was a tube-dwelling organism. They also challenge traditional evolutionary hypotheses of different organ systems, among them the nervous system. In textbooks the central nervous system is described as consisting of a ganglionic ventral nervous system and a dorsally located brain with different tracts that connect certain parts of the brain to each other. Only limited information on the fine structure, however, is available for Oweniidae, which constitute the sister group (possibly together with Magelonidae) to all remaining annelids., Results: The brain of Oweniidae is ring- shaped and basiepidermal. Ganglia, higher brain centers or complex sensory organs do not exist; instead the central nervous system is medullary. Posterior to the brain the ventral medullary cord arises directly from the ventral region of the brain in Myriowenia sp. while in Owenia fusiformis two medullary cords arise perpendicular to the brain ring, extend caudally and fuse posterior. The central nervous system is composed of a central neuropil and surrounding somata of the neurons. According to ultrastructural and histological data only one type of neuron is present in the central nervous system., Conclusion: The central nervous system of Oweniidae is the simplest in terms of enlargement of the dorsal part of the brain and neuron distribution found among Annelida. Our investigation suggests that neither ganglia nor commissures inside the brain neuropil or clusters of polymorphic neurons were present in the annelid stem species. These structures evolved later within Annelida, most likely in the stem lineage of Amphinomidae, Sipuncula and Pleistoannelida. Palps were supposedly present in the last common ancestor of annelids and innervated by two nerves originating in the dorsal part of the brain. A broader comparison with species of each major spiralian clade shows the medullary nervous system to be a common feature and thus possibly representing the ancestral state of the spiralian nervous system. Moreover, ganglia and clusters of polymorphic neurons seemingly evolved independently in the compared taxa of Spiralia and Annelida., Competing Interests: Not applicableNot applicableThe authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
- Published
- 2019
- Full Text
- View/download PDF
32. Convergent evolution of the ladder-like ventral nerve cord in Annelida.
- Author
-
Helm C, Beckers P, Bartolomaeus T, Drukewitz SH, Kourtesis I, Weigert A, Purschke G, Worsaae K, Struck TH, and Bleidorn C
- Abstract
Background: A median, segmented, annelid nerve cord has repeatedly been compared to the arthropod and vertebrate nerve cords and became the most used textbook representation of the annelid nervous system. Recent phylogenomic analyses, however, challenge the hypothesis that a subepidermal rope-ladder-like ventral nerve cord (VNC) composed of a paired serial chain of ganglia and somata-free connectives represents either a plesiomorphic or a typical condition in annelids., Results: Using a comparative approach by combining phylogenomic analyses with morphological methods (immunohistochemistry and CLSM, histology and TEM), we compiled a comprehensive dataset to reconstruct the evolution of the annelid VNC. Our phylogenomic analyses generally support previous topologies. However, the so far hard-to-place Apistobranchidae and Psammodrilidae are now incorporated among the basally branching annelids with high support. Based on this topology we reconstruct an intraepidermal VNC as the ancestral state in Annelida. Thus, a subepidermal ladder-like nerve cord clearly represents a derived condition., Conclusions: Based on the presented data, a ladder-like appearance of the ventral nerve cord evolved repeatedly, and independently of the transition from an intraepidermal to a subepidermal cord during annelid evolution. Our investigations thereby propose an alternative set of neuroanatomical characteristics for the last common ancestor of Annelida or perhaps even Spiralia., Competing Interests: Ethics approval and consent to participate were not required for this work.Not applicable.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
- Published
- 2018
- Full Text
- View/download PDF
33. Phylogeny and systematics of Aphroditiformia.
- Author
-
Gonzalez BC, Martínez A, Borda E, Iliffe TM, Eibye-Jacobsen D, and Worsaae K
- Abstract
Aphroditiformia represents one of the most successful radiations of annelids, and is therefore an interesting model to understand morphological and functional evolution. Previous phylogenetic analyses yielded most families as monophyletic but excluded anchialine and interstitial species while failing to recover relationships within Sigalionidae. Here we address these shortcomings through the analysis of four molecular markers and 87 morphological characters sampled across 127 species under the assumptions of parsimony and model-based methods. Of the 34 newly sequenced taxa, five anchialine and 24 interstitial species were included, with increased representation of Sigalionidae. An additional 28 elusive Sigalionidae taxa were included, represented only by morphological partitions. Molecular and morphological partitions were evaluated under exhaustive sensitivity analyses, testing the effects of alignment algorithms and optimization criteria on tree topologies. Our trees congruently recovered six clades corresponding to the families within Aphroditiformia: Acoetidae, Aphroditidae, Eulepethidae, Iphionidae, Polynoidae and Sigalionidae, respectively. An anchialine polynoid lineage was nested among strictly deep sea species, and interstitial pisionids and pholoids formed two independent clades nested within Sigalionidae. Additionally, Sigalionidae resulted in four clades, defined by combinations of apomorphies, and hereby we propose the subfamilies Pelogeniinae, Pholoinae, Pisioninae, Sthenelanellinae, as well as the provisionally included polyphyletic Sigalioninae., (© The Willi Hennig Society 2017.)
- Published
- 2018
- Full Text
- View/download PDF
34. Regeneration of the Rhopalium and the Rhopalial Nervous System in the Box Jellyfish Tripedalia cystophora.
- Author
-
Stamatis SA, Worsaae K, and Garm A
- Subjects
- Animals, Nervous System Physiological Phenomena, Sensory Receptor Cells physiology, Cubozoa anatomy & histology, Cubozoa physiology, Regeneration physiology
- Abstract
Cubozoans have the most intricate visual apparatus within Cnidaria. It comprises four identical sensory structures, the rhopalia, each of which holds six eyes of four morphological types. Two of these eyes are camera-type eyes that are, in many ways, similar to the vertebrate eye. The visual input is used to control complex behaviors, such as navigation and obstacle avoidance, and is processed by an elaborate rhopalial nervous system. Several studies have examined the rhopalial nervous system, which, despite a radial symmetric body plan, is bilaterally symmetrical, connecting the two sides of the rhopalium through commissures in an extensive neuropil. The four rhopalia are interconnected by a nerve ring situated in the oral margin of the bell, and together these structures constitute the cubozoan central nervous system. Cnidarians have excellent regenerative capabilities, enabling most species to regenerate large body areas or body parts, and some species can regenerate completely from just a few hundred cells. Here we test whether cubozoans are capable of regenerating the rhopalia, despite the complexity of the visual system and the rhopalial nervous system. The results show that the rhopalia are readily regrown after amputation and have developed most, if not all, neural elements within two weeks. Using electrophysiology, we investigated the functionality of the regrown rhopalia and found that they generated pacemaker signals and that the lens eyes showed a normal response to light. Our findings substantiate the amazing regenerative ability in Cnidaria by showing here the complex sensory system of Cubozoa, a model system proving to be highly applicable in studies of neurogenesis.
- Published
- 2018
- Full Text
- View/download PDF
35. Spiralian Phylogeny Informs the Evolution of Microscopic Lineages.
- Author
-
Laumer CE, Bekkouche N, Kerbl A, Goetz F, Neves RC, Sørensen MV, Kristensen RM, Hejnol A, Dunn CW, Giribet G, and Worsaae K
- Published
- 2017
- Full Text
- View/download PDF
36. High diversity in neuropeptide immunoreactivity patterns among three closely related species of Dinophilidae (Annelida).
- Author
-
Kerbl A, Conzelmann M, Jékely G, and Worsaae K
- Subjects
- Animals, Annelida metabolism, Insect Proteins ultrastructure, Microscopy, Electron, Scanning, Nerve Tissue Proteins metabolism, Nervous System anatomy & histology, Nervous System ultrastructure, Species Specificity, Annelida anatomy & histology, Insect Proteins metabolism, Nervous System metabolism, Neuropeptides metabolism
- Abstract
Neuropeptides are conserved metazoan signaling molecules, and represent useful markers for comparative investigations on the morphology and function of the nervous system. However, little is known about the variation of neuropeptide expression patterns across closely related species in invertebrate groups other than insects. In this study, we compare the immunoreactivity patterns of 14 neuropeptides in three closely related microscopic dinophilid annelids (Dinophilus gyrociliatus, D. taeniatus and Trilobodrilus axi). The brains of all three species were found to consist of around 700 somata, surrounding a central neuropil with 3-5 ventral and 2-5 dorsal commissures. Neuropeptide immunoreactivity was detected in the brain, the ventral cords, stomatogastric nervous system, and additional nerves. Different neuropeptides are expressed in specific, non-overlapping cells in the brain in all three species. FMRFamide, MLD/pedal peptide, allatotropin, RNamide, excitatory peptide, and FVRIamide showed a broad localization within the brain, while calcitonin, SIFamide, vasotocin, RGWamide, DLamide, FLamide, FVamide, MIP, and serotonin were present in fewer cells in demarcated regions. The different markers did not reveal ganglionic subdivisions or physical compartmentalization in any of these microscopic brains. The non-overlapping expression of different neuropeptides may indicate that the regionalization in these uniform, small brains is realized by individual cells, rather than cell clusters, representing an alternative to the lobular organization observed in several macroscopic annelids. Furthermore, despite the similar gross brain morphology, we found an unexpectedly high variation in the expression patterns of neuropeptides across species. This suggests that neuropeptide expression evolves faster than morphology, representing a possible mechanism for the evolutionary divergence of behaviors., (© 2017 Wiley Periodicals, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
37. Genetic spatial structure of an anchialine cave annelid indicates connectivity within - but not between - islands of the Great Bahama Bank.
- Author
-
Gonzalez BC, Martínez A, Borda E, Iliffe TM, Fontaneto D, and Worsaae K
- Subjects
- Animals, Annelida genetics, Bahamas, Bayes Theorem, Biological Evolution, Caves, Ecosystem, Gene Flow, Genetic Variation, Geography, Islands, Phylogeny, Phylogeography, Annelida classification
- Abstract
Land-locked anchialine blue holes are karstic sinkholes and caves with tidally influenced, vertically stratified water bodies that harbor endemic fauna exhibiting variable troglomorphic features. These habitats represent island-like systems, which can serve to elucidate evolutionary and biogeographic processes at local scales. We investigated whether the 'continuous spelean corridor' hypothesis may elucidate the biogeographical distributions of the stygobitic annelid Pelagomacellicephala iliffei (Polynoidae) collected from the Great Bahama and Caicos Banks of the Bahamas Archipelago. Phylogenetic reconstructions were performed using Bayesian Inference on individual and combined datasets of three molecular markers (16S rDNA, COI, 18S rDNA) and species delimitation employed three widely accepted methods in DNA taxonomy, namely GMYC, bPTP, and ABGD. Mantel tests were used to test the effect of geography on genetic structure. Using these analyses, we recovered five independently evolving entities of the focal species across four islands of the Great Bahama Bank including Cat, Eleuthera, Exumas, and Long. Genetic data yielded strong correlations between islands and phylogenetic entities, signifying independent evolutionary histories within anchialine caves across the platform. The island of Eleuthera showed intra-island gene flow and dispersal capabilities between blue holes separated by 115km, providing evidence of a crevicular spelean corridor within the island. However, no evidence of inter-island dispersal is present in the analyzed system. Consistent with previous biogeographic studies of cave crustaceans, the major barriers shaping the cave biota of the Bahamas Archipelago appears to be the deep trenches and channels separating the Bahamian banks., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
38. Phylogeny and biogeography of the scaleless scale worm Pisione (Sigalionidae, Annelida).
- Author
-
Gonzalez BC, Petersen HCB, Di Domenico M, Martínez A, Armenteros M, García-Machado E, Møller PR, and Worsaae K
- Abstract
Pisione is a scaleless group of small scale worms inhabiting sandy bottoms in shallow marine waters. This group was once considered rare, but now 45 described species can be characterized, among others, by their paired, segmental copulatory organs (one to multiple external pairs), which display a complexity of various accessory structures. The evolutionary significance of these unique organs was suggested in the late 1960s, but has been heavily debated since the late 1990s and remains controversial. In the present paper, we study the internal relationships within Pisione, employing combined phylogenetic analyses of both molecular and morphological data from 16 terminals of Pisione, as well as two terminals of Pisionidens, and eight additional scale worms as outgroups. Our taxon sampling covers all geographical areas where the genus has been reported, as well as most of their morphological and copulatory variability, including representatives of the "africana," "remota," "crassa," and "papuensis" groups, established previously by Yamanishi. We hereby provide a first insight into the relationships of the genus, testing previously proposed hypotheses on the evolutionary significance of male copulatory structures within Pisione , while attempting to understand patterns of distribution. The phylogenetic analyses using maximum likelihood and Bayesian methods consistently recovered two large clades spanning the East Atlantic (including the Mediterranean) and the Indo-Pacific-West Atlantic, respectively. Character optimization on our trees revealed a high degree of homoplasy in both non-reproductive and sexual characters of Pisione, with buccal acicula found to be the sole apomorphy among the morphological features assessed herein, with none defining the biogeographical subclades within. Overall, our comparative analyses highlight the high degree of morphological variation in this widely distributed genus, rejecting previous assertions of an increasing number and complexity of copulatory structures across the genus.
- Published
- 2017
- Full Text
- View/download PDF
39. Comparison of neuromuscular development in two dinophilid species (Annelida) suggests progenetic origin of Dinophilus gyrociliatus .
- Author
-
Kerbl A, Fofanova EG, Mayorova TD, Voronezhskaya EE, and Worsaae K
- Abstract
Background: Several independent meiofaunal lineages are suggested to have originated through progenesis, however, morphological support for this heterochronous process is still lacking. Progenesis is defined as an arrest of somatic development (synchronously in various organ systems) due to early maturation, resulting in adults resembling larvae or juveniles of the ancestors. Accordingly, we established a detailed neuromuscular developmental atlas of two closely related Dinophilidae using immunohistochemistry and CLSM. This allows us to test for progenesis, questioning whether i) the adult smaller, dimorphic Dinophilus gyrociliatus resembles a younger developmental stage of the larger, monomorphic D. taeniatus and whether ii) dwarf males of D. gyrociliatus resemble an early developmental stage of D. gyrociliatus females., Results: Both species form longitudinal muscle bundles first, followed by circular muscles, creating a grid of body wall musculature, which is the densest in adult D. taeniatus , while the architecture in adult female D. gyrociliatus resembles that of prehatching D. taeniatus . Both species display a subepidermal ganglionated nervous system with an anterior dorsal brain and five longitudinal ventral nerve bundles with six sets of segmental commissures (associated with paired ganglia). Neural differentiation of D. taeniatus and female D. gyrociliatus commissures occurs before hatching: both species start out forming one transverse neurite bundle per segment, which are thereafter joined by additional thin bundles. Whereas D. gyrociliatus arrests its development at this stage, adult D. taeniatus condenses the thin commissures again into one thick commissural bundle per segment. Generally, D. taeniatus adults demonstrate a seemingly more organized (= segmental) pattern of serotonin-like and FMRFamide-like immunoreactive elements. The dwarf male of D. gyrociliatus displays a highly aberrant neuromuscular system, showing no close resemblance to any early developmental stage of female Dinophilus , although the onset of muscular development mirrors the early myogenesis in females., Conclusion: The apparent synchronous arrest of nervous and muscular development in adult female D. gyrociliatus, resembling the prehatching stage of D. taeniatus, suggests that D. gyrociliatus have originated through progenesis. The synchrony in arrest of three organ systems, which show opposing reduction and addition of elements, presents one of the morphologically best-argued cases of progenesis within Spiralia.
- Published
- 2016
- Full Text
- View/download PDF
40. Nervous system and ciliary structures of Micrognathozoa (Gnathifera): evolutionary insight from an early branch in Spiralia.
- Author
-
Bekkouche N and Worsaae K
- Abstract
Recent studies show that Gnathifera, comprising Rotifera, Gnathostomulida and Micrognathozoa, constitute the sister group to the remaining Spiralia (containing, e.g. flatworms, segmented worms and molluscs). Therefore, a better understanding of Gnathifera is central for unravelling the evolution of the highly diverse Spiralia. Here, we describe the previously unstudied nervous system and ciliary structures of Micrognathozoa, using immunohistochemistry and confocal laser scanning microscopy. The nervous system is simple with a large brain, paired sub-esophageal ganglia, two trunk commissures, two pairs of ventral longitudinal nerves and peripheral nerves. The paired ventro-lateral nerve cords are confirmed to be a symplesiomorphy of Gnathifera (possibly even Spiralia), whereas the paired ventro-median nerves are not previously reported in Gnathifera. A pharyngeal ganglion is described for Micrognathozoa: a complex structure with two apical tufts of ciliary receptors, now shown to be shared by all Gnathifera. The ventral pattern of external ciliophores is re-described, and protonephridia with multi-ciliated collecting tubules similar to those of Rotifera are confirmed. A range of new details from a simple nervous system and complex set of ciliary structures in a microscopic metazoan are hereby unravelled. The many resemblances with Rotifera corroborate their close relationship, and shed more light on the evolution of Gnathifera.
- Published
- 2016
- Full Text
- View/download PDF
41. Neuromuscular study of early branching Diuronotus aspetos (Paucitubulatina) yields insights into the evolution of organs systems in Gastrotricha.
- Author
-
Bekkouche N and Worsaae K
- Abstract
Background: Diuronotus is one of the most recently described genera of Paucitubulatina, one of the three major clades in Gastrotricha. Its morphology suggests that Diuronotus is an early branch of Paucitubulatina, making it a key taxon for understanding the evolution of this morphologically understudied group. Here we test its phylogenetic position employing molecular data, and provide detailed descriptions of the muscular, nervous, and ciliary systems of Diuronotus aspetos, using immunohistochemistry and confocal laser scanning microscopy., Results: We confirm the proposed position of D. aspetos within Muselliferidae, and find this family to be the sister group to Xenotrichulidae. The muscular system, revealed by F-actin staining, shows a simple, but unique organization of the trunk musculature with a reduction to three pairs of longitudinal muscles and addition of up to five pairs of dorso-ventral muscles, versus the six longitudinal and two dorso-ventral pairs found in most Paucitubulatina. Using acetylated α-tubulin immunoreactivity, we describe the pharynx in detail, including new nervous structures, two pairs of sensory cilia, and a unique canal system. The central nervous system, as revealed by immunohistochemistry, shows the general pattern of Gastrotricha having a bilobed brain and a pair of ventro-longitudinal nerve cords. However, in addition are found an anterior nerve ring, several anterior longitudinal nerves, and four ventral commissures (pharyngeal, trunk, pre-anal, and terminal). Two pairs of protonephridia are documented, while other Paucitubulatina have one. Moreover, the precise arrangement of multiciliated cells is unraveled, yielding a pattern of possibly systematic importance., Conclusion: Several neural structures of Diuronotus resemble those found in Xenotrichula (Xenotrichulidae) and may constitute new apomorphies of Paucitubulatina, or even Gastrotricha. In order to test these new evolutionary hypotheses, comparable morphological data from other understudied gastrotrich branches and a better resolution of the basal nodes of the gastrotrich phylogeny are warranted. Nonetheless, the present study offers new insights into the evolution of organ systems and systematic importance of so-far neglected characters in Gastrotricha.
- Published
- 2016
- Full Text
- View/download PDF
42. In situ ingestion of microfibres by meiofauna from sandy beaches.
- Author
-
Gusmão F, Domenico MD, Amaral ACZ, Martínez A, Gonzalez BC, Worsaae K, Ivar do Sul JA, and Cunha Lana PD
- Subjects
- Animals, Atlantic Ocean, Biodiversity, Environmental Monitoring, Environmental Pollution, Food Chain, Aquatic Organisms, Feeding Behavior physiology, Gastrointestinal Contents, Plastics, Polychaeta physiology
- Abstract
Microfibres are widespread contaminants in marine environments across the globe. Detecting in situ ingestion of microfibres by small marine organisms is necessary to understand their potential accumulation in marine food webs and their role in marine pollution. We have examined the gut contents of meiofauna from six sandy beaches in the Atlantic Ocean and the Mediterranean. Out of twenty taxonomic groups, three species of the common sandy beach annelid Saccocirrus displayed in situ ingestion of microfibres in all sites. Laboratory observations showed that species of Saccocirrus are able to egest microfibres with no obvious physical injury. We suggest that their non-selective microphagous suspension-feeding behaviour makes Saccocirrus more prone to ingest microfibres. Although microfibres are rapidly egested with no apparent harm, there is still the potential for trophic transfer into marine food webs through predation of Saccocirrus., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
43. Molecular regionalization in the compact brain of the meiofaunal annelid Dinophilus gyrociliatus (Dinophilidae).
- Author
-
Kerbl A, Martín-Durán JM, Worsaae K, and Hejnol A
- Abstract
Background: Annelida is a morphologically diverse animal group that exhibits a remarkable variety in nervous system architecture (e.g., number and location of longitudinal cords, architecture of the brain). Despite this heterogeneity of neural arrangements, the molecular profiles related to central nervous system patterning seem to be conserved even between distantly related annelids. In particular, comparative molecular studies on brain and anterior neural region patterning genes have focused so far mainly on indirect-developing macrofaunal taxa. Therefore, analyses on microscopic, direct-developing annelids are important to attain a general picture of the evolutionary events underlying the vast diversity of annelid neuroanatomy., Results: We have analyzed the expression domains of 11 evolutionarily conserved genes involved in brain and anterior neural patterning in adult females of the direct-developing meiofaunal annelid Dinophilus gyrociliatus. The small, compact brain shows expression of dimmed, foxg, goosecoid, homeobrain, nk2.1, orthodenticle, orthopedia, pax6, six3/6 and synaptotagmin-1. Although most of the studied markers localize to specific brain areas, the genes six3/6 and synaptotagmin-1 are expressed in nearly all perikarya of the brain. All genes except for goosecoid, pax6 and nk2.2 overlap in the anterior brain region, while the respective expression domains are more separated in the posterior brain., Conclusions: Our findings reveal that the expression patterns of the genes foxg, orthodenticle, orthopedia and six3/6 correlate with those described in Platynereis dumerilii larvae, and homeobrain, nk2.1, orthodenticle and synaptotagmin-1 resemble the pattern of late larvae of Capitella teleta. Although data on other annelids are limited, molecular similarities between adult Dinophilus and larval Platynereis and Capitella suggest an overall conservation of molecular mechanisms patterning the anterior neural regions, independent from developmental and ecological strategies, or of the size and configuration of the nervous system.
- Published
- 2016
- Full Text
- View/download PDF
44. Neural reconstruction of bone-eating Osedax spp. (Annelida) and evolution of the siboglinid nervous system.
- Author
-
Worsaae K, Rimskaya-Korsakova NN, and Rouse GW
- Subjects
- Animals, Biological Evolution, Bone and Bones, Feeding Behavior, Female, Male, Microscopy, Confocal, Nerve Tissue ultrastructure, Nervous System anatomy & histology, Polychaeta physiology, Brain cytology, Polychaeta anatomy & histology
- Abstract
Background: Bone-devouring Osedax worms were described over a decade ago from deep-sea whale falls. The gutless females (and in one species also the males) have a unique root system that penetrates the bone and nourishes them via endosymbiotic bacteria. Emerging from the bone is a cylindrical trunk, which is enclosed in a transparent tube, that generally gives rise to a plume of four palps (or tentacles). In most Osedax species, dwarf males gather in harems along the female's trunk and the nervous system of these microscopic forms has been described in detail. Here, the nervous system of bone-eating Osedax forms are described for the first time, allowing for hypotheses on how the abberant ventral brain and nervous system of Siboglinidae may have evolved from a ganglionated nervous system with a dorsal brain, as seen in most extant annelids., Results: The intraepidermal nervous systems of four female Osedax spp. and the bone-eating O. priapus male were reconstructed in detail by a combination of immunocytochemistry, CLSM, histology and TEM. They all showed a simple nervous system composed of an anterior ventral brain, connected with anteriorly directed paired palp and gonoduct nerves, and four main pairs of posteriorly directed longitudinal nerves (2 ventral, 2 ventrolateral, 2 sets of dorso-lateral, 2 dorsal). Transverse peripheral nerves surround the trunk, ovisac and root system. The nervous system of Osedax resembles that of other siboglinids, though possibly presenting additional lateral and dorsal longitudinal nerves. It differs from most Sedentaria in the presence of an intraepidermal ventral brain, rather than a subepidermal dorsal brain, and by having an intraepidermal nerve cord with several plexi and up to three main commissures along the elongated trunk, which may comprise two indistinct segments., Conclusions: Osedax shows closer neuroarchitectural resemblance to Vestimentifera + Sclerolinum (= Monilifera) than to Frenulata. The intraepidermal nervous system with widely separated nerve cords, double brain commissures, double palp nerves and other traits found in Osedax can all be traced to represent ancestral states of Siboglinidae. A broader comparison of the nervous system and body regions across Osedax and other siboglinids allows for a reinterpretation of the anterior body region in the group.
- Published
- 2016
- Full Text
- View/download PDF
45. Detailed reconstruction of the nervous and muscular system of Lobatocerebridae with an evaluation of its annelid affinity.
- Author
-
Kerbl A, Bekkouche N, Sterrer W, and Worsaae K
- Subjects
- Animals, Annelida ultrastructure, Biological Evolution, Female, Male, Microscopy, Confocal, Microscopy, Electron, Transmission, Muscles anatomy & histology, Muscles ultrastructure, Nervous System anatomy & histology, Annelida anatomy & histology, Annelida classification
- Abstract
Background: The microscopic worm group Lobatocerebridae has been regarded a 'problematicum', with the systematic relationship being highly debated until a recent phylogenomic study placed them within annelids (Curr Biol 25: 2000-2006, 2015). To date, a morphological comparison with other spiralian taxa lacks detailed information on the nervous and muscular system, which is here presented for Lobatocerebrum riegeri n. sp. based on immunohistochemistry and confocal laser scanning microscopy, supported by TEM and live observations., Results: The musculature is organized as a grid of longitudinal muscles and transverse muscular ring complexes in the trunk. The rostrum is supplied by longitudinal muscles and only a few transverse muscles. The intraepidermal central nervous system consists of a big, multi-lobed brain, nine major nerve bundles extending anteriorly into the rostrum and two lateral and one median cord extending posteriorly to the anus, connected by five commissures. The glandular epidermis has at least three types of mucus secreting glands and one type of adhesive unicellular glands., Conclusions: No exclusive "annelid characters" could be found in the neuromuscular system of Lobatocerebridae, except for perhaps the mid-ventral nerve. However, none of the observed structures disputes its position within this group. The neuromuscular and glandular system of L. riegeri n. sp. shows similarities to those of meiofaunal annelids such as Dinophilidae and Protodrilidae, yet likewise to Gnathostomulida and catenulid Platyhelminthes, all living in the restrictive interstitial environment among sand grains. It therefore suggests an extreme evolutionary plasticity of annelid nervous and muscular architecture, previously regarded as highly conservative organ systems throughout metazoan evolution.
- Published
- 2015
- Full Text
- View/download PDF
46. Articulating "Archiannelids": Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa.
- Author
-
Andrade SC, Novo M, Kawauchi GY, Worsaae K, Pleijel F, Giribet G, and Rouse GW
- Subjects
- Animals, Evolution, Molecular, Phylogeny, Polychaeta classification, Polychaeta genetics, Sequence Analysis, DNA, Annelida classification, Annelida genetics
- Abstract
Annelid disparity has resulted in morphological-based classifications that disagree with phylogenies based on Sanger sequencing and phylogenomic analyses. However, the data used for the latter studies came from various sources and technologies, involved poorly occupied matrices and lacked key lineages. Here, we generated a new Illumina-based data set to address annelid relationships from a fresh perspective, independent from previously generated data and with nearly fully occupied matrices. Our sampling reflects the span of annelid diversity, including two symbiotic annelid groups (Myzostomida and Spinther) and five meiofaunal groups once referred to as part of Archiannelida (three from Protodrilida, plus Dinophilus and Polygordius). As well as the placement of these unusual annelids, we sought to address the overall phylogeny of Annelida, and provide a new perspective for naming of major clades. Our results largely corroborate the phylogenomic results of Weigert et al. (2014; Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol. 31:1391-1401), with "Magelona + Owenia" and Chaetopteridae forming a grade with respect to all other annelids. Echiura and Sipuncula are supported as being annelid groups, with Sipuncula closest to amphinomids as sister group to Sedentaria and Errantia. We recovered the three Protodrilida terminals as sister clade to Phyllodocida and Eunicida (=clade Aciculata). We therefore place Protodrilida as part of Errantia. Polygordius was found to be sister group to the scaleworm terminal and the possibility that it is a simplified scaleworm clade, as has been shown for the former family Pisionidae, is discussed. Our results were equivocal with respect to Dinophilus, Myzostomida, and Spinther possibly owing to confounding long-branch effects., (© The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
47. Spiralian phylogeny informs the evolution of microscopic lineages.
- Author
-
Laumer CE, Bekkouche N, Kerbl A, Goetz F, Neves RC, Sørensen MV, Kristensen RM, Hejnol A, Dunn CW, Giribet G, and Worsaae K
- Subjects
- Animals, Evolution, Molecular, Invertebrates anatomy & histology, Rotifera anatomy & histology, Rotifera classification, Rotifera genetics, Biological Evolution, Invertebrates classification, Invertebrates genetics, Phylogeny
- Abstract
Despite rapid advances in the study of metazoan evolutionary history [1], phylogenomic analyses have so far neglected a number of microscopic lineages that possess a unique combination of characters and are thus informative for our understanding of morphological evolution. Chief among these lineages are the recently described animal groups Micrognathozoa and Loricifera, as well as the two interstitial "Problematica" Diurodrilus and Lobatocerebrum [2]. These genera show a certain resemblance to Annelida in their cuticle and gut [3, 4]; however, both lack primary annelid characters such as segmentation and chaetae [5]. Moreover, they show unique features such as an inverted body-wall musculature or a novel pharyngeal organ. This and their ciliated epidermis have led some to propose relationships with other microscopic spiralians, namely Platyhelminthes, Gastrotricha, and in the case of Diurodrilus, with Micrognathozoa [6, 7]-lineages that are grouped by some analyses into "Platyzoa," a clade whose status remains uncertain [1, 8-11]. Here, we assess the interrelationships among the meiofaunal and macrofaunal members of Spiralia using 402 orthologs mined from genome and transcriptome assemblies of 90 taxa. Lobatocerebrum and Diurodrilus are found to be deeply nested members of Annelida, and unequivocal support is found for Micrognathozoa as the sister group of Rotifera. Analyses using site-heterogeneous substitution models further recover a lophophorate clade and position Loricifera + Priapulida as sister group to the remaining Ecdysozoa. Finally, with several meiofaunal lineages branching off early in the diversification of Spiralia, the emerging concept of a microscopic, acoelomate, direct-developing ancestor of Spiralia is reviewed., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
48. Phylogeny and systematics of Protodrilidae (Annelida) inferred with total evidence analyses.
- Author
-
Martínez A, Di Domenico M, Rouse GW, and Worsaae K
- Abstract
Protodrilidae is a group of small, superficially simple-looking annelids, lacking chaetae and appendages, except for two prostomial palps. Originally considered to be one of the primitive "archiannelid" families, its affinity within Annelida is still highly debated. Protodrilids are found worldwide in the interstices of intertidal and subtidal marine sediments. Despite their simple appearance they constitute one of the most species-rich interstitial families, with 36 described species in two genera, Protodrilus and the gutless Astomus. Here we present the first phylogenetic study of Protodrilidae employing five gene fragments, 55 morphological characters and 73 terminals (including seven outgroups) analysed under direct optimization and parsimony as well as model-based methods. The large data set includes all 36 described species of Protodrilidae (17 of which are represented only by the morphological partition) as well as 30 undescribed or uncertain species (represented by both morphology and molecules). This comprehensive, inclusive and combined analysis revealed a new perspective on the phylogeny of Protodrilidae: the family is shown to contain six cosmopolitan subclades, each supported by several morphological apomorphies, and with the genus Astomus consistently nested among the other five clades rather than next to these. Consequently, the diagnosis of Protodrilus is emended, Astomus remains unchanged and the four remaining lineages are diagnosed and named Megadrilus n. gen, Meiodrilus gen. nov., Claudrilus n. gen and Lindrilus gen. nov. Character transformations showed that large size and presence of pigmentation, oviducts and eyes are plesiomorphies of the family, retained in Protodrilus, Megadrilus gen. nov. and Lindrilus gen. nov. These features are secondarily lost in the gutless Astomus with epidermal uptake of nutrients, as well as in Meiodrilus gen. nov. and some species of Claudrilus n. gen, with smaller size correlated to life in interstices of finer sediments., (© The Willi Hennig Society 2014.)
- Published
- 2015
- Full Text
- View/download PDF
49. A dwarf male reversal in bone-eating worms.
- Author
-
Rouse GW, Wilson NG, Worsaae K, and Vrijenhoek RC
- Subjects
- Animals, Biological Evolution, Electron Transport Complex IV genetics, Electron Transport Complex IV metabolism, Female, Larva classification, Larva genetics, Larva growth & development, Larva physiology, Male, Mitochondrial Proteins genetics, Mitochondrial Proteins metabolism, Molecular Sequence Data, Polychaeta genetics, Polychaeta growth & development, Sequence Analysis, DNA, Sex Characteristics, Body Size, Phylogeny, Polychaeta classification, Polychaeta physiology
- Abstract
Darwin hypothesized that sexes in a species should be similar unless sexual selection, fecundity selection, or resource partitioning has driven them apart. Male dwarfism has evolved multiple times in a range of animals, raising questions about factors that drive such extreme size dimorphism. Ghiselin noted that dwarf males are more common among smaller marine animals, and especially among sedentary and sessile species living at low densities, where mates are difficult to find, or in deep-sea environments with limited energy sources. These benefits of male dwarfism apply well to Osedax (Annelida: Siboglinidae), bone-eating marine worms. Osedax males, notable for extreme sexual size dimorphism (SSD), are developmentally arrested larvae that produce sperm from yolk reserves. Harems of dwarf males reside in the lumen of the tube surrounding a female. Herein, we describe Osedax priapus n. sp., a species that deviates remarkably by producing males that anchor into, and feed on, bone via symbiont-containing "roots," just like female Osedax. Phylogenetic analyses revealed O. priapus n. sp. as a derived species, and the absence of dwarf males represents a character reversal for this genus. Some dwarf male features are retained due to functional and morphological constraints. Since O. priapus n. sp. males are anchored in bone, they possess an extensible trunk that allows them to roam across the bone to contact and inseminate females. Evolutionary and ecological implications of a loss of male dwarfism are discussed., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
50. A new annelid species from whalebones in Greenland and aquaculture sites in Newfoundland: Ophryotrocha cyclops, sp. nov. (Eunicida: Dorvilleidae).
- Author
-
Salvo F, Wiklund H, Dufour SC, Hamoutene D, Pohle G, and Worsaae K
- Subjects
- Animal Distribution, Animal Structures anatomy & histology, Animal Structures growth & development, Animals, Body Size, Ecosystem, Female, Greenland, Male, Organ Size, Phylogeny, Polychaeta anatomy & histology, Polychaeta genetics, Polychaeta growth & development, Polychaeta classification
- Abstract
A new species of Ophryotrocha was discovered on whalebones in Greenland (120 m depth) and at finfish aquaculture sites in Newfoundland (30-70 m depth), where it is considered to be a bioindicator of aquaculture-related organic enrichment. Phylogenetic analyses based on three genes (COI, 16S mitochondrial and H3 nuclear genes) show close affinities with O. lobifera and O. craigsmithi, two species also found on both whalebones and at aquaculture sites (North Sea), and with O. shieldsi from aquaculture sites in Tasmania. The new species is named Ophryotrocha cyclops sp. nov. due to the juxtaposed, quasi-fused central eyes that give the impression of a single eye in live specimens.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.