18 results on '"Woods, Michaela J"'
Search Results
2. The influence of riparian invasion by the terrestrial shrub Lonicera maackii on aquatic macroinvertebrates in temperate forest headwater streams
- Author
-
Little, Michelle N., Custer, Kevin W., Borth, Eric B., Chapman, Julia I., Kukla, Mitchell J., Kuminecz, Corey, Maloney, Margaret E., Woods, Michaela J., and McEwan, Ryan W.
- Published
- 2021
- Full Text
- View/download PDF
3. Pyrus calleryana extracts reduce germination of native grassland species, suggesting the potential for allelopathic effects during ecological invasion
- Author
-
Woods, Michaela J., primary, Bauer, Jonathan T., additional, Schaeffer, Dena, additional, and McEwan, Ryan W., additional
- Published
- 2023
- Full Text
- View/download PDF
4. Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments
- Author
-
Rúa, Megan A., Lamit, Louis J., Gehring, Catherine, Antunes, Pedro M., Hoeksema, Jason D., Zabinski, Cathy, Karst, Justine, Burns, Cole, and Woods, Michaela J.
- Published
- 2017
- Full Text
- View/download PDF
5. Termite sensitivity to temperature affects global wood decay rates
- Author
-
Zanne, Amy E, Flores-Moreno, Habacuc, Powell, Jeff R, Cornwell, William K, Dalling, James W, Austin, Amy T, Classen, Aimée T, Eggleton, Paul, Okada, Kei-Ichi, Parr, Catherine L, Adair, E Carol, Adu-Bredu, Stephen, Alam, Md Azharul, Alvarez-Garzón, Carolina, Apgaua, Deborah, Aragón, Roxana, Ardon, Marcelo, Arndt, Stefan K, Ashton, Louise A, Barber, Nicholas A, Beauchêne, Jacques, Berg, Matty P, Beringer, Jason, Boer, Matthias M, Bonet, José Antonio, Bunney, Katherine, Burkhardt, Tynan J, Carvalho, Dulcinéia, Castillo-Figueroa, Dennis, Cernusak, Lucas A, Cheesman, Alexander W, Cirne-Silva, Tainá M, Cleverly, Jamie R, Cornelissen, Johannes H C, Curran, Timothy J, D'Angioli, André M, Dallstream, Caroline, Eisenhauer, Nico, Evouna Ondo, Fidele, Fajardo, Alex, Fernandez, Romina D, Ferrer, Astrid, Fontes, Marco A L, Galatowitsch, Mark L, González, Grizelle, Gottschall, Felix, Grace, Peter R, Granda, Elena, Griffiths, Hannah M, Guerra Lara, Mariana, Hasegawa, Motohiro, Hefting, Mariet M, Hinko-Najera, Nina, Hutley, Lindsay B, Jones, Jennifer, Kahl, Anja, Karan, Mirko, Keuskamp, Joost A, Lardner, Tim, Liddell, Michael, Macfarlane, Craig, Macinnis-Ng, Cate, Mariano, Ravi F, Méndez, M Soledad, Meyer, Wayne S, Mori, Akira S, Moura, Aloysio S, Northwood, Matthew, Ogaya, Romà, Oliveira, Rafael S, Orgiazzi, Alberto, Pardo, Juliana, Peguero, Guille, Penuelas, Josep, Perez, Luis I, Posada, Juan M, Prada, Cecilia M, Přívětivý, Tomáš, Prober, Suzanne M, Prunier, Jonathan, Quansah, Gabriel W, Resco de Dios, Víctor, Richter, Ronny, Robertson, Mark P, Rocha, Lucas F, Rúa, Megan A, Sarmiento, Carolina, Silberstein, Richard P, Silva, Mateus C, Siqueira, Flávia Freire, Stillwagon, Matthew Glenn, Stol, Jacqui, Taylor, Melanie K, Teste, François P, Tng, David Y P, Tucker, David, Türke, Manfred, Ulyshen, Michael D, Valverde-Barrantes, Oscar J, van den Berg, Eduardo, van Logtestijn, Richard S P, Veen, G F Ciska, Vogel, Jason G, Wardlaw, Timothy J, Wiehl, Georg, Wirth, Christian, Woods, Michaela J, Zalamea, Paul-Camilo, Ecology and Biodiversity, Sub Ecology and Biodiversity, Ecology and Biodiversity, Sub Ecology and Biodiversity, Conservation Ecology Group, Animal Ecology, Systems Ecology, and Terrestrial Ecology (TE)
- Subjects
Tropical Climate ,Multidisciplinary ,Temperature ,Isoptera ,Forests ,Wood ,Global Warming ,Carbon Cycle ,Tròpics--Clima ,Explotació forestal ,Cicle del carboni ,Animals ,Wood/microbiology ,General - Abstract
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)—even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth’s surface. This study received support from the following sources: US National Science Foundation (NSF) DEB-1655759 (A.E.Z.); US NSF DEB-2149151 (A.E.Z.); US NSF DEB-1713502 (M.A.); US NSF DEB-1713435 (M.A.); US NSF DEB-1647502 (N.A.B.); US NSF DEB-1546686 (G.G.); US NSF DEB-1831952 (G.G.); George Washington University (A.E.Z.); USDA Forest Service (G.G.); Centre College Faculty Development Funds (M.L.G.); Australia Terrestrial Ecosystem Research Network National Collaborative Research Infrastructure Strategy (P.R.G., M.K., M.L., M.M.B., R.P.S., J.S., L.B.H., M.N., S.M.P., T.J.W., and S.K.A.); Royal Society-FCDO Africa Capacity Building Initiative (C.L.P., G.W.Q., S.A.-B., K.B., F.E.O., and M.P.R.); New Phytologist Foundation (A.T.A.); Fondecyt grant 1160329 (C.D.); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES) (E.v.d.B., A.S.Mou., R.F.M., F.F.S., T.M.C.-S., R.S.O., and A.M.D.); Department of Ecology and Conservation of the Federal University of Lavras (T.M.C.-S.); CNPq (E.v.d.B. and R.S.O.); FAPEMIG (E.v.d.B.); Australian Academy of Science 2017 Thomas Davies Research Grant (J.R.P.); Australian Research Council DP160103765 (W.K.C., J.R.P., and A.E.Z.); UK National Environment Research Council NE/L000016/1 (L.A.A.); Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil NERC - FAPESP 19/07773-1 (R.S.O. and A.M.D.); Environment Research and Technology Development Fund ERTDF, JPMEERF15S11420 of the Environmental Restoration and Conservation Agency of Japan (A.S.Mor. and K.O.); COLCIENCIAS no. FP44842-046-2017 (J.M.P.); Spanish government PID2019-110521GB-I00 (J.Pe., G.P., and R.O.); Catalan government grant SGR 2017-1005 (J.Pe., G.P., and R.O.); Fundación Ramón Areces ELEMENTAL-CLIMATE (J.Pe., G.P., and R.O.); National Agency for the Promotion of Research, Technological Development and Innovation, Scientific and Technological Research Project 2018-01561 PICT 2018-01561 (F.P.T.); ANID PIA/BASAL FB210006 (A.Fa.); Millennium Science Initiative Program NCN2021-050 (A.Fa.); iDiv German Research Foundation DFG–FZT 118, 202548816 (N.E.); and European Research Council Horizon 2020 research and innovation program no. 677232 (N.E.).
- Published
- 2022
6. Termite sensitivity to temperature affects global wood decay rates
- Author
-
Ecology and Biodiversity, Sub Ecology and Biodiversity, Zanne, Amy E, Flores-Moreno, Habacuc, Powell, Jeff R, Cornwell, William K, Dalling, James W, Austin, Amy T, Classen, Aimée T, Eggleton, Paul, Okada, Kei-Ichi, Parr, Catherine L, Adair, E Carol, Adu-Bredu, Stephen, Alam, Md Azharul, Alvarez-Garzón, Carolina, Apgaua, Deborah, Aragón, Roxana, Ardon, Marcelo, Arndt, Stefan K, Ashton, Louise A, Barber, Nicholas A, Beauchêne, Jacques, Berg, Matty P, Beringer, Jason, Boer, Matthias M, Bonet, José Antonio, Bunney, Katherine, Burkhardt, Tynan J, Carvalho, Dulcinéia, Castillo-Figueroa, Dennis, Cernusak, Lucas A, Cheesman, Alexander W, Cirne-Silva, Tainá M, Cleverly, Jamie R, Cornelissen, Johannes H C, Curran, Timothy J, D'Angioli, André M, Dallstream, Caroline, Eisenhauer, Nico, Evouna Ondo, Fidele, Fajardo, Alex, Fernandez, Romina D, Ferrer, Astrid, Fontes, Marco A L, Galatowitsch, Mark L, González, Grizelle, Gottschall, Felix, Grace, Peter R, Granda, Elena, Griffiths, Hannah M, Guerra Lara, Mariana, Hasegawa, Motohiro, Hefting, Mariet M, Hinko-Najera, Nina, Hutley, Lindsay B, Jones, Jennifer, Kahl, Anja, Karan, Mirko, Keuskamp, Joost A, Lardner, Tim, Liddell, Michael, Macfarlane, Craig, Macinnis-Ng, Cate, Mariano, Ravi F, Méndez, M Soledad, Meyer, Wayne S, Mori, Akira S, Moura, Aloysio S, Northwood, Matthew, Ogaya, Romà, Oliveira, Rafael S, Orgiazzi, Alberto, Pardo, Juliana, Peguero, Guille, Penuelas, Josep, Perez, Luis I, Posada, Juan M, Prada, Cecilia M, Přívětivý, Tomáš, Prober, Suzanne M, Prunier, Jonathan, Quansah, Gabriel W, Resco de Dios, Víctor, Richter, Ronny, Robertson, Mark P, Rocha, Lucas F, Rúa, Megan A, Sarmiento, Carolina, Silberstein, Richard P, Silva, Mateus C, Siqueira, Flávia Freire, Stillwagon, Matthew Glenn, Stol, Jacqui, Taylor, Melanie K, Teste, François P, Tng, David Y P, Tucker, David, Türke, Manfred, Ulyshen, Michael D, Valverde-Barrantes, Oscar J, van den Berg, Eduardo, van Logtestijn, Richard S P, Veen, G F Ciska, Vogel, Jason G, Wardlaw, Timothy J, Wiehl, Georg, Wirth, Christian, Woods, Michaela J, Zalamea, Paul-Camilo, Ecology and Biodiversity, Sub Ecology and Biodiversity, Zanne, Amy E, Flores-Moreno, Habacuc, Powell, Jeff R, Cornwell, William K, Dalling, James W, Austin, Amy T, Classen, Aimée T, Eggleton, Paul, Okada, Kei-Ichi, Parr, Catherine L, Adair, E Carol, Adu-Bredu, Stephen, Alam, Md Azharul, Alvarez-Garzón, Carolina, Apgaua, Deborah, Aragón, Roxana, Ardon, Marcelo, Arndt, Stefan K, Ashton, Louise A, Barber, Nicholas A, Beauchêne, Jacques, Berg, Matty P, Beringer, Jason, Boer, Matthias M, Bonet, José Antonio, Bunney, Katherine, Burkhardt, Tynan J, Carvalho, Dulcinéia, Castillo-Figueroa, Dennis, Cernusak, Lucas A, Cheesman, Alexander W, Cirne-Silva, Tainá M, Cleverly, Jamie R, Cornelissen, Johannes H C, Curran, Timothy J, D'Angioli, André M, Dallstream, Caroline, Eisenhauer, Nico, Evouna Ondo, Fidele, Fajardo, Alex, Fernandez, Romina D, Ferrer, Astrid, Fontes, Marco A L, Galatowitsch, Mark L, González, Grizelle, Gottschall, Felix, Grace, Peter R, Granda, Elena, Griffiths, Hannah M, Guerra Lara, Mariana, Hasegawa, Motohiro, Hefting, Mariet M, Hinko-Najera, Nina, Hutley, Lindsay B, Jones, Jennifer, Kahl, Anja, Karan, Mirko, Keuskamp, Joost A, Lardner, Tim, Liddell, Michael, Macfarlane, Craig, Macinnis-Ng, Cate, Mariano, Ravi F, Méndez, M Soledad, Meyer, Wayne S, Mori, Akira S, Moura, Aloysio S, Northwood, Matthew, Ogaya, Romà, Oliveira, Rafael S, Orgiazzi, Alberto, Pardo, Juliana, Peguero, Guille, Penuelas, Josep, Perez, Luis I, Posada, Juan M, Prada, Cecilia M, Přívětivý, Tomáš, Prober, Suzanne M, Prunier, Jonathan, Quansah, Gabriel W, Resco de Dios, Víctor, Richter, Ronny, Robertson, Mark P, Rocha, Lucas F, Rúa, Megan A, Sarmiento, Carolina, Silberstein, Richard P, Silva, Mateus C, Siqueira, Flávia Freire, Stillwagon, Matthew Glenn, Stol, Jacqui, Taylor, Melanie K, Teste, François P, Tng, David Y P, Tucker, David, Türke, Manfred, Ulyshen, Michael D, Valverde-Barrantes, Oscar J, van den Berg, Eduardo, van Logtestijn, Richard S P, Veen, G F Ciska, Vogel, Jason G, Wardlaw, Timothy J, Wiehl, Georg, Wirth, Christian, Woods, Michaela J, and Zalamea, Paul-Camilo
- Published
- 2022
7. Termite sensitivity to temperature affects global wood decay rates
- Author
-
Zanne, Amy E., Flores-Moreno, Habacuc, Powell, Jeff R., Cornwell, William K., Dalling, James W., Austin, Amy T., Classen, Aimée T., Eggleton, Paul, Okada, Kei Ichi, Parr, Catherine L., Carol Adair, E., Adu-Bredu, Stephen, Alam, Md Azharul, Alvarez-Garzón, Carolina, Apgaua, Deborah, Aragón, Roxana, Ardon, Marcelo, Arndt, Stefan K., Ashton, Louise A., Barber, Nicholas A., Beauchêne, Jacques, Berg, Matty P., Beringer, Jason, Boer, Matthias M., Bonet, José Antonio, Bunney, Katherine, Burkhardt, Tynan J., Carvalho, Dulcinéia, Castillo-Figueroa, Dennis, Cernusak, Lucas A., Cheesman, Alexander W., Cirne-Silva, Tainá M., Cleverly, Jamie R., Cornelissen, Johannes H.C., Curran, Timothy J., D’Angioli, André M., Dallstream, Caroline, Eisenhauer, Nico, Ondo, Fidele Evouna, Fajardo, Alex, Fernandez, Romina D., Ferrer, Astrid, Fontes, Marco A.L., Galatowitsch, Mark L., González, Grizelle, Gottschall, Felix, Grace, Peter R., Granda, Elena, Griffiths, Hannah M., Lara, Mariana Guerra, Hasegawa, Motohiro, Hefting, Mariet M., Hinko-Najera, Nina, Hutley, Lindsay B., Jones, Jennifer, Kahl, Anja, Karan, Mirko, Keuskamp, Joost A., Lardner, Tim, Liddell, Michael, Macfarlane, Craig, Macinnis-Ng, Cate, Mariano, Ravi F., Soledad Méndez, M., Meyer, Wayne S., Mori, Akira S., Moura, Aloysio S., Northwood, Matthew, Ogaya, Romà, Oliveira, Rafael S., Orgiazzi, Alberto, Pardo, Juliana, Peguero, Guille, Penuelas, Josep, Perez, Luis I., Posada, Juan M., Prada, Cecilia M., Přívětivý, Tomáš, Prober, Suzanne M., Prunier, Jonathan, Quansah, Gabriel W., de Dios, Víctor Resco, Richter, Ronny, Robertson, Mark P., Rocha, Lucas F., Rúa, Megan A., Sarmiento, Carolina, Silberstein, Richard P., Silva, Mateus C., Siqueira, Flávia Freire, Stillwagon, Matthew Glenn, Stol, Jacqui, Taylor, Melanie K., Teste, François P., Tng, David Y.P., Tucker, David, Türke, Manfred, Ulyshen, Michael D., Valverde-Barrantes, Oscar J., van den Berg, Eduardo, van Logtestijn, Richard S.P., Ciska Veen, G. F., Vogel, Jason G., Wardlaw, Timothy J., Wiehl, Georg, Wirth, Christian, Woods, Michaela J., Zalamea, Paul Camilo, Zanne, Amy E., Flores-Moreno, Habacuc, Powell, Jeff R., Cornwell, William K., Dalling, James W., Austin, Amy T., Classen, Aimée T., Eggleton, Paul, Okada, Kei Ichi, Parr, Catherine L., Carol Adair, E., Adu-Bredu, Stephen, Alam, Md Azharul, Alvarez-Garzón, Carolina, Apgaua, Deborah, Aragón, Roxana, Ardon, Marcelo, Arndt, Stefan K., Ashton, Louise A., Barber, Nicholas A., Beauchêne, Jacques, Berg, Matty P., Beringer, Jason, Boer, Matthias M., Bonet, José Antonio, Bunney, Katherine, Burkhardt, Tynan J., Carvalho, Dulcinéia, Castillo-Figueroa, Dennis, Cernusak, Lucas A., Cheesman, Alexander W., Cirne-Silva, Tainá M., Cleverly, Jamie R., Cornelissen, Johannes H.C., Curran, Timothy J., D’Angioli, André M., Dallstream, Caroline, Eisenhauer, Nico, Ondo, Fidele Evouna, Fajardo, Alex, Fernandez, Romina D., Ferrer, Astrid, Fontes, Marco A.L., Galatowitsch, Mark L., González, Grizelle, Gottschall, Felix, Grace, Peter R., Granda, Elena, Griffiths, Hannah M., Lara, Mariana Guerra, Hasegawa, Motohiro, Hefting, Mariet M., Hinko-Najera, Nina, Hutley, Lindsay B., Jones, Jennifer, Kahl, Anja, Karan, Mirko, Keuskamp, Joost A., Lardner, Tim, Liddell, Michael, Macfarlane, Craig, Macinnis-Ng, Cate, Mariano, Ravi F., Soledad Méndez, M., Meyer, Wayne S., Mori, Akira S., Moura, Aloysio S., Northwood, Matthew, Ogaya, Romà, Oliveira, Rafael S., Orgiazzi, Alberto, Pardo, Juliana, Peguero, Guille, Penuelas, Josep, Perez, Luis I., Posada, Juan M., Prada, Cecilia M., Přívětivý, Tomáš, Prober, Suzanne M., Prunier, Jonathan, Quansah, Gabriel W., de Dios, Víctor Resco, Richter, Ronny, Robertson, Mark P., Rocha, Lucas F., Rúa, Megan A., Sarmiento, Carolina, Silberstein, Richard P., Silva, Mateus C., Siqueira, Flávia Freire, Stillwagon, Matthew Glenn, Stol, Jacqui, Taylor, Melanie K., Teste, François P., Tng, David Y.P., Tucker, David, Türke, Manfred, Ulyshen, Michael D., Valverde-Barrantes, Oscar J., van den Berg, Eduardo, van Logtestijn, Richard S.P., Ciska Veen, G. F., Vogel, Jason G., Wardlaw, Timothy J., Wiehl, Georg, Wirth, Christian, Woods, Michaela J., and Zalamea, Paul Camilo
- Abstract
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)—even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth’s surface.
- Published
- 2022
- Full Text
- View/download PDF
8. Oak seedling performance and soil development across a forest restoration chronosequence following agriculture in the American Midwest – a greenhouse experiment
- Author
-
Woods, Michaela J., primary, Frankenberg, Sarah J., additional, Juodvalkis, Joseph R., additional, Lloyd, Mary C., additional, Cobb, Meredith, additional, and McEwan, Ryan W., additional
- Published
- 2021
- Full Text
- View/download PDF
9. Resprouting of the woody plant Pyrus calleryana influences soil ecology during invasion of grasslands in the American Midwest
- Author
-
Woods, Michaela J., primary, Attea, Grace K., additional, and McEwan, Ryan W., additional
- Published
- 2021
- Full Text
- View/download PDF
10. Oak seedling performance and soil development across a forest restoration chronosequence following agriculture in the American Midwest—a greenhouse experiment.
- Author
-
Woods, Michaela J., Frankenberg, Sarah J., Juodvalkis, Joseph R., Lloyd, Mary C., Cobb, Meredith, and McEwan, Ryan W.
- Subjects
- *
FOREST restoration , *SOIL formation , *FOREST soils , *SOIL restoration , *TREE seedlings , *SEEDLINGS - Abstract
Overcoming establishment limitation is an integral task during forest restoration on degraded lands for tree species whose prominence is declining, such as those in the Quercus genus. Fallow agricultural lands are suitable for forest restoration efforts by planting seedlings; however, tree seedling success may be limited due to soil conditions that are distinct from relict forests. Here, we assessed soil nutrient content, physicochemical parameters, and microorganism function via soil enzyme activity from five restorations that were implemented 0, 7, 10, 50, or 100 years ago. We planted Q. macrocarpa (bur oak) seedlings in soils collected from each site for 5 months before collecting dry biomass, used as a proxy for size. We found that Q. macrocarpa seedlings had the largest total biomass when they were planted in soils from older restorations. There was a significant positive correlation of the amount of soil carbon, nitrogen, organic matter, and soil moisture with tree size, and these soil parameters increased with forest age. We assessed seedling roots for mutualistic ectomycorrhizal fungi, but we did not find associations between their presence and tree size. Forest restoration is a complex process, which can take many decades, but we suggest that reforestation may be accelerated by implementing active soil restoration to increase soil carbon, nitrogen, and water holding capacity prior to planting tree seedlings in target sites. Active soil restoration may aide in overcoming a significant portion of establishment limitation of ecologically important tree species that typically do not fare well in early‐stage restorations. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
11. The influence of riparian invasion by the terrestrial shrub Lonicera maackii on aquatic macroinvertebrates in temperate forest headwater streams
- Author
-
Little, Michelle N., primary, Custer, Kevin W., additional, Borth, Eric B., additional, Chapman, Julia I., additional, Kukla, Mitchell J., additional, Kuminecz, Corey, additional, Maloney, Margaret E., additional, Woods, Michaela J., additional, and McEwan, Ryan W., additional
- Published
- 2020
- Full Text
- View/download PDF
12. Assessing Seed Handling Processes to Facilitate a Community-Engaged Approach to Regional Forest Restoration
- Author
-
Cobb, Meredith, primary, Woods, Michaela J., additional, and McEwan, Ryan W., additional
- Published
- 2020
- Full Text
- View/download PDF
13. White-tailed deer and an invasive shrub facilitate faster carbon cycling in a forest ecosystem
- Author
-
Woods, Michaela J., primary, Roberson, Elizabeth, additional, Cipollini, Don, additional, and Rúa, Megan A., additional
- Published
- 2019
- Full Text
- View/download PDF
14. Assessing the Efficacy of Seedling Planting as a Forest Restoration Technique in Temperate Hardwood Forests Impacted by Invasive Species
- Author
-
Woods, Michaela J., primary, Cobb, Meredith, additional, Hickle, Katie, additional, and McEwan, Ryan W., additional
- Published
- 2019
- Full Text
- View/download PDF
15. Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments.
- Author
-
Rúa, Megan A., Lamit, Louis J., Gehring, Catherine, Antunes, Pedro M., Hoeksema, Jason D., Zabinski, Cathy, Karst, Justine, Burns, Cole, and Woods, Michaela J.
- Abstract
Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
16. Restoring Degraded and Invaded Landscapes: A Soil-Based Approach
- Author
-
Woods, Michaela J.
- Subjects
- Biology, Ecology, Pyrus calleryana, restoration, oak, Quercus, soil enzyme, invasion, Callery pear
- Abstract
Ecosystem disturbance and degradation have led to dramatically altered plant communities, necessitating their restoration to return to native states. One disturbance is emerald ash borer, an exotic, invasive insect that has decimated ash tree populations creating gaps in many forest canopies. Due to the influx of exotic invasive plant species, traditional forest recovery has been altered in that plant species establishing in gaps favor invasive shrubs to native tree seedlings. Thus, I measured the growth and survival of native tree species planted within a forest affected by emerald ash borer to determine what species may outcompete invasive species and regenerate into the forest canopy. I found that butternut and shellbark hickory trees had high survival rates compared to red oak, and could be target species for replacing ash trees in stands impacted by emerald ash borer. When fallow fields are dominated by Callery pear, a pervasive new invader in the Eastern US, native plant establishment may be limited. I found that Callery pear tends to invade near forested edges of grassland ecosystems, likely because there is increased propagule pressure from generalist frugivorous birds which forage both in Callery pear invaded areas and on forest edges creating seed rain. Callery pear occurs where there is less ground cover of forbs and grasses suggesting that it either invades in areas that have less plant cover or that it inhibits the establishment of native species. In a lab-based experiment, I found that Callery pear is likely allelopathic and can inhibit the germination of common prairie species which could prevent its establishment. Further, in the field, I found that Callery pear can acidify the soil where it establishes, and it may input carbon into the soil system which changes the activities of microorganisms in the soil. Together, these changes to soil chemistry can reduce the likelihood of native species to establish and can prevent invasive species from establishing, potentially lending to the creation of dense monocultures where this tree invades. Another disturbance to many ecosystems is industrial agriculture, which has degraded native ecosystems reducing soil organic matter content, water holding capacity and altering chemistry. During traditional succession in the Eastern US deciduous ecosystems, native plant cover would regenerate with time in open fields and forest canopies could develop within 50-100 years of passive regeneration. The first plants to establish during succession have long distance dispersal mechanisms and can survive harsh environments with little plant cover and eroded soils. When assessing the change in soil chemistry from 0-to 100-year-old forests regenerated on previous agricultural fields, we identified a recovery in soil carbon, nitrogen and water capacity, which increased the growth of bur oak seedlings when grown in a greenhouse environment, indicating that restoring soils could promote the regeneration of oak species. To accelerate the process of forest restoration informed by this study, I implemented soil amendments and planted transitional prairie communities to increase native biodiversity and resist invasion in a fallow agricultural field, which led to the initiation of a long-term research and forest restoration site, outlined here.
- Published
- 2023
17. Lonicera maackii alters decay dynamics of coarse woody debris
- Author
-
Woods, Michaela J.
- Subjects
- Biology, Ecology, Environmental Science, Plant Sciences, Soil Sciences, decomposition, Amur honeysuckle, enzyme, fungal community, nutrient cycling
- Abstract
Since industrialization, anthropogenic carbon emissions have led to excess atmospheric carbon dioxide that may alter the stability of ecosystem processes. Microorganisms are essential in mitigating excess carbon and play a notable role in the breakdown of organic material. This process, decomposition, is essential in forested ecosystems where microorganisms can recycle nutrients and store carbon in soil organic matter or release it through respiration. Fungi participate in decomposition through the release of enzymes responsible for carrying out the chemical reactions that break down plant material. Species introductions have the potential to alter decomposition dynamics. In the Midwestern US, the invasive shrub species Lonicera maackii has overtaken many forests and is likely altering decay dynamics and the destiny of carbon within the region. Thus, it is essential to monitor the decay of woody debris under invasion pressures of L. maackii in order to monitor nutrient cycling in this region. I placed blocks of native Quercus rubra and economically important Pinus radiata in an L. maackii invaded forest for one year to determine environmental, enzymatic and fungal drivers of decomposition. Decomposition was faster for oak wood than pine wood, and decomposition rate was not directly altered by L. maackii. Instead, L. maackii increased the moisture of the decomposing wood, leading to higher amounts of hydrolytic enzyme activity which structured fungal communities within decaying wood. This insinuates that despite not altering decomposition rates directly, L. maackii is priming native woody debris for faster decomposition and therefore increasing the rate of nutrient turnover. Thus, L. maackii imposes shifts to fungal communities and their functionality and the soil environment. These changes could become especially important in later stage decay where there will likely be perceptible differences in decay rates as altered by L. maackii. The changes L. maackii imposes on decomposition will likely lead to faster carbon release from forested ecosystems and shorter retention times. Consequently, to ensure effective management strategies that mitigate excess carbon dioxide from the atmosphere, monitoring decomposition of woody material in invaded forests is imperative.
- Published
- 2018
18. Termite sensitivity to temperature affects global wood decay rates.
- Author
-
Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada KI, Parr CL, Adair EC, Adu-Bredu S, Alam MA, Alvarez-Garzón C, Apgaua D, Aragón R, Ardon M, Arndt SK, Ashton LA, Barber NA, Beauchêne J, Berg MP, Beringer J, Boer MM, Bonet JA, Bunney K, Burkhardt TJ, Carvalho D, Castillo-Figueroa D, Cernusak LA, Cheesman AW, Cirne-Silva TM, Cleverly JR, Cornelissen JHC, Curran TJ, D'Angioli AM, Dallstream C, Eisenhauer N, Evouna Ondo F, Fajardo A, Fernandez RD, Ferrer A, Fontes MAL, Galatowitsch ML, González G, Gottschall F, Grace PR, Granda E, Griffiths HM, Guerra Lara M, Hasegawa M, Hefting MM, Hinko-Najera N, Hutley LB, Jones J, Kahl A, Karan M, Keuskamp JA, Lardner T, Liddell M, Macfarlane C, Macinnis-Ng C, Mariano RF, Méndez MS, Meyer WS, Mori AS, Moura AS, Northwood M, Ogaya R, Oliveira RS, Orgiazzi A, Pardo J, Peguero G, Penuelas J, Perez LI, Posada JM, Prada CM, Přívětivý T, Prober SM, Prunier J, Quansah GW, Resco de Dios V, Richter R, Robertson MP, Rocha LF, Rúa MA, Sarmiento C, Silberstein RP, Silva MC, Siqueira FF, Stillwagon MG, Stol J, Taylor MK, Teste FP, Tng DYP, Tucker D, Türke M, Ulyshen MD, Valverde-Barrantes OJ, van den Berg E, van Logtestijn RSP, Veen GFC, Vogel JG, Wardlaw TJ, Wiehl G, Wirth C, Woods MJ, and Zalamea PC
- Subjects
- Animals, Carbon Cycle, Temperature, Tropical Climate, Forests, Global Warming, Isoptera, Wood microbiology
- Abstract
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.