1. Computational Study of Halide Perovskite-Derived A$_2$BX$_6$ Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability
- Author
-
Cai, Yao, Xie, Wei, Ding, Hong, Chen, Yan, Krishnamoorthy, Thirumal, Wong, Lydia H., Mathews, Nripan, Mhaisalkar, Subodh G., Sherburne, Matthew, and Asta, Mark
- Subjects
Condensed Matter - Materials Science - Abstract
The electronic structure and energetic stability of A$_2$BX$_6$ halide compounds with the cubic and tetragonal variants of the perovskite-derived K$_2$PtCl$_6$ prototype structure are investigated computationally within the frameworks of density-functional-theory (DFT) and hybrid (HSE06) functionals. The HSE06 calculations are undertaken for seven known A$_2$BX$_6$ compounds with A = K, Rb and Cs, and B = Sn, Pd, Pt, Te, and X = I. Trends in band gaps and energetic stability are identified, which are explored further employing DFT calculations over a larger range of chemistries, characterized by A = K, Rb, Cs, B = Si, Ge, Sn, Pb, Ni, Pd, Pt, Se and Te and X = Cl, Br, I. For the systems investigated in this work, the band gap increases from iodide to bromide to chloride. Further, variations in the A site cation influences the band gap as well as the preferred degree of tetragonal distortion. Smaller A site cations such as K and Rb favor tetragonal structural distortions, resulting in a slightly larger band gap. For variations in the B site in the (Ni, Pd, Pt) group and the (Se, Te) group, the band gap increases with increasing cation size. However, no observed chemical trend with respect to cation size for band gap was found for the (Si, Sn, Ge, Pb) group. The findings in this work provide guidelines for the design of halide A$_2$BX$_6$ compounds for potential photovoltaic applications.
- Published
- 2017